Skip to main content
Log in

Rank-1 lattice rules for multivariate integration in spaces of permutation-invariant functions

Error bounds and tractability

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study multivariate integration of functions that are invariant under permutations (of subsets) of their arguments. We find an upper bound for the nth minimal worst case error and show that under certain conditions, it can be bounded independent of the number of dimensions. In particular, we study the application of unshifted and randomly shifted rank-1 lattice rules in such a problem setting. We derive conditions under which multivariate integration is polynomially or strongly polynomially tractable with the Monte Carlo rate of convergence \(\mathcal {O}(n^{-1/2})\). Furthermore, we prove that those tractability results can be achieved with shifted lattice rules and that the shifts are indeed necessary. Finally, we show the existence of rank-1 lattice rules whose worst case error on the permutation- and shift-invariant spaces converge with (almost) optimal rate. That is, we derive error bounds of the form \(\mathcal {O}(n^{-\lambda /2})\) for all 1≤λ<2α, where α denotes the smoothness of the spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dick, J., Kuo, F.Y., Sloan, I.H.: High dimensional integration: The quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge Univ. Press, Cambridge (2010)

    Book  Google Scholar 

  4. Hickernell, F.J., Woźniakowski, H.: Integration and approximation in arbitrary dimensions. Adv. Comput. Math 12, 25–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. I: Linear Information, EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)

  6. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. II: Standard Information for Functionals, EMS Tracts in Mathematics, vol. 12, European Mathematical Society (EMS), Zürich (2010)

  7. Nuyens, D. The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) : Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, Radon Series on Computational and Applied Mathematics, vol. 15, pp. 223–256. De Gruyter, Berlin, Boston (2014)

    Google Scholar 

  8. Nuyens, D., Suryanarayana, G., Weimar, M.: Construction of quasi-Monte Carlo rules for multivariate integration in spaces of permutation-invariant functions. In preparation (2015)

  9. Plaskota, L., Wasilkowski, G.W., Zhao, Y.: New averaging technique for approximating weighted integrals. J. Complexity 25, 268–291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publ., Oxford Univ. Press, New York (1994)

  11. Sloan, I.H., Woźniakowski, H.: An intractability result for multiple integration. Math. Comp 66, 1119–1124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?. J. Complexity 14, 1–33 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ullrich, T.: Smolyak’s algorithm, sampling on sparse grids and Sobolev spaces of dominating mixed smoothness. East J. Approx. 14(1), 1–38 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Weimar, M.: The complexity of linear tensor product problems in (anti)symmetric Hilbert spaces. J. Approx. Theory 164(10), 1345–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weimar, M.: On lower bounds for integration of multivariate permutation-invariant functions. J. Complexity 30(1), 87–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Weimar.

Additional information

Communicated by: Ian H. Sloan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuyens, D., Suryanarayana, G. & Weimar, M. Rank-1 lattice rules for multivariate integration in spaces of permutation-invariant functions. Adv Comput Math 42, 55–84 (2016). https://doi.org/10.1007/s10444-015-9411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9411-6

Keywords

Mathematics Subject Classifications (2010)

Navigation