Skip to main content
Log in

Numerical integration of Hamiltonian problems by G-symplectic methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. 2nd edn. Springer-Verlag, New York (1989)

    Book  Google Scholar 

  2. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge-Kutta methods. SIAM. J. Numer. Anal 16(33), 46–57 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burrage, K., Butcher, J.C.: Nonlinear stability of a general class of differential equation methods. BIT 20, 185–203 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burrage, K., Hundsdorfer, W.H.: The order of B-convergence of algebraically stable Runge-Kutta methods. BIT 27, 62–71 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J.C.: The equivalence of algebraic stability and AN-stability. BIT 27, 510–533 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  8. Butcher, J.C.: Dealing with parasitic behaviour in G-Symplectic integrators. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design 120, Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, pp. 105–123 (2013)

  9. Butcher, J.C., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems, (submitted).

  10. Butcher, J.C., Hewitt, L.L.: The existence of symplectic general linear methods. Numer. Algor. 51, 77–84 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cooper, G.J.: Stability of Runge-Kutta methods for trajectory problems. IMA. J. Numer. Anal. 7, 1–13 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575–590 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. 152(3), 881–901 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: A practical approach for the derivation of algebraically stable two-step Runge-Kutta methods. Math. Model. Anal. 17(1), 65–77 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebraically stable two-step continuous Runge-Kutta methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. D’Ambrosio, R.: On the G-symplecticity of two-step Runge-Kutta methods. Commun. Appl. Ind. Math. 3(1), e–403 (2012). doi:10.1685/journal.caim.403

    MathSciNet  Google Scholar 

  17. D’Ambrosio, R., De Martino, G., Paternoster, B.: Construction of nearly conservative multivalue numerical methods for Hamiltonian problems. Commun. Appl. Ind. Math. 3(2), e–412 (2012). doi:10.1685/journal.caim.412

    Google Scholar 

  18. D’Ambrosio, R., Esposito, E., Paternoster, B.: General Linear Methods for \(y''=f(y(t))\). Numer. Algoritm. 61(2), 331–349 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for ordinary differential equations. Numer. Algoritm. 53(2–3), 195–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Search for highly stable two-step Runge-Kutta methods for ODEs. Appl. Numer. Math. 62(10), 1361–1379 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. D’Ambrosio, R., Jackiewicz, Z.: Continuous two-step Runge-Kutta methods for ordinary differential equations. Numer. Algoritm. 54(2), 169–193 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. D’Ambrosio, R., Jackiewicz, Z.: Construction and implementation of highly stable two-step continuous methods for stiff differential systems. Math. Comput. Simul. 81(9), 1707–1728 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. D’Ambrosio, R., Paternoster, B.: Two-step modified collocation methods with structured coefficient matrices for ordinary differential equations. Appl. Numer. Math. 62(10), 1325–1334 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Faou, E., Hairer, E., Pham, T.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44(4), 699–709 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Habib, Y.: Long-term Behaviour of G-symplectic Methods. PhD thesis, The University of Auckland (2010)

  26. Hairer, E.: Backward analysis of numerical integrators and symplectic methods. Scientific computation and differential equations. Ann. Numer. Math. 1(1–4), 107–132 (1994)

    MATH  MathSciNet  Google Scholar 

  27. Hairer, E.: Backward error analysis for multistep methods. Numer. Math. 84, 199–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer-Verlag, Berlin (2006)

    Google Scholar 

  29. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer-Verlag, Berlin (2008)

    Google Scholar 

  30. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. John Wiley & Sons. Hoboken, New Jersey (2009)

    Book  Google Scholar 

  31. Lasagni, F.M.: Canonical Runge-Kutta methods. Z. Angew. Math. Phys. 39, 952–953 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A: Math. Gen. 39(19), 5251–5285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Okunbor, D., Skeel, R.D.: Explicit canonical methods for Hamiltonian systems. Math. Comput. 59(200), 439–455 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Reich, S.: On higher-order semi-implicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer. Math. 76(2), 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall. England, London (1994)

    Book  Google Scholar 

  36. Suris, Y.B.: Preservation of symplectic structure in the numerical solution of Hamiltonian systems (in Russian). Akad. Nauk SSSR, Inst. Prikl. Mat., Moscow, 148–160 232, 238–239 (1988)

    Google Scholar 

  37. Tang, Y.F.: The simplecticity of multistep methods. Comput. Math. Appl. 25(3), 83–90 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele D’Ambrosio.

Additional information

Communicated by: Kendall Atkinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, R., De Martino, G. & Paternoster, B. Numerical integration of Hamiltonian problems by G-symplectic methods. Adv Comput Math 40, 553–575 (2014). https://doi.org/10.1007/s10444-013-9318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9318-z

Keywords

Mathematics Subject Classification (2010)

Navigation