Skip to main content
Log in

Prime tight frames

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames. to appear. J. Fourier Anal. Appl. 18, 1167-1194 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18, 357–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benedetto, J.J., Kolesar, J.D.: Geometric properties of Grassmannian frames for ℝ2 and ℝ3. EURASIP Process. J. Appl. Sig. 7, 1–17 (2006)

    Article  Google Scholar 

  4. Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casazza, P., Heinecke, A., Kornelson, K., Wang, Y., Zhou, Z.: Necessary and sufficient conditions to perform spectral tetris. to appear. Linear Algebra Appl. 438, 2239–2255 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chien, T.-Y., Waldron, S.: A classification of the harmonic frames up to unitary equivalence. Appl. Comput. Harmon. Anal. 30, 307–318 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston (2003)

    Google Scholar 

  10. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (part I). IEEE Sig. Process. Mag. 24, 86–104 (2007)

    Article  Google Scholar 

  12. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Sig. Process. Mag. 24, 115–125 (2007)

    Article  Google Scholar 

  13. Kutyniok, G., Krahmer, F., Lemvig, J.: Sparsity and spectral properties of dual frames. to appear. Linear Algebra Appl. 439, 982–998 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra 224, 91–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sivek, G.: On vanishing sums of distinct roots of unity. Integers 10, 365–368 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parametrization. J. Fourier Anal. Appl. 17, 821–853 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11, 251–258 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inform. Theory 51(5), 1900–1907 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Lemvig.

Additional information

Communicated by: Yang Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemvig, J., Miller, C. & Okoudjou, K.A. Prime tight frames. Adv Comput Math 40, 315–334 (2014). https://doi.org/10.1007/s10444-013-9309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9309-0

Keywords

Mathematics Subject Classifications (2010)

Navigation