Skip to main content
Log in

A newton-penalty method for a simplified liquid crystal model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the computation of a liquid crystal model defined by a simplified Oseen-Frank energy functional and a (sphere) nonlinear constraint. A particular case of this model defines the well known harmonic maps. We design a new iterative method for solving such a minimization problem with the nonlinear constraint. The main ideas are to linearize the nonlinear constraint by Newton’s method and to define a suitable penalty functional associated with the original minimization problem. It is shown that the solution sequence of the new minimization problems with the linear constraints converges to the desired solutions provided that the penalty parameters are chosen by a suitable rule. Numerical results confirm the efficiency of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34, 1708–1726 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alouges, F.: A new finite element scheme for Landau-Lifchitz equations. Discret. Contin. Dyn. Syst. Ser. S1(2), 187196 (2008)

    MathSciNet  Google Scholar 

  3. Bartels, S.: Stability and convergence of finite element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43, 220–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comp. 79, 1263–1301 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrett, J., Feng, X., Prohl, A.: On p-harmonic map heat flows for 1 ≤ p < ∞ and their finite element approximations. SIAM J. Math. Anal. 40(4), 1471C1498 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bethuel, F., Brezis, H., H́elein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhauser Boston, Inc, Boston (1994)

    Google Scholar 

  7. Brezis, H.: The interplay between analysis and topology in some nonlinear PDE problems. Bull. Amer. Math. Soc. 40, 179–201 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X.: Global and superlinear convergence of inexact Uzawa methods for saddle-point problems with nondifferentiable mappings. SIAM J. Numer. Anal. 35, 1130–1148 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. E, W., Wang, X.: Numerical Methods for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 38, 1647–1665 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Glowinski, R., Lin, P., Pan, X.: An operator-splitting method for a liquid crystal model. Comput. Phys. Commun. 152, 242–252 (2003)

    Article  Google Scholar 

  12. Hélein, F.: Régularité des applications faiblement harmoniques une surface et une variété riemannienne. C. R. Acad. Sci. Paris 312, 591–596 (1991)

    MATH  Google Scholar 

  13. Hélein, F.: Maps harmonic conservation laws and moving frames. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  14. Hu, Q., Tai, X.-C., Winther, R.: A saddle-point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47, 1500–1523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hu, Q., Zou, J.: Nonlinear Inexact Uzawa Algorithms for Linear and Nonlinear Saddle-point Problems. SIAM J. Optim. 16, 798–825 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Luo, C., Majumdar, A., Erban, R.: Multistability in planar liquid crystal wells. Phys. Rev. E 85(6) (2012)

  17. Pierre, M.: Newton and conjugate gradient for harmonic maps from the disc into the sphere. ESAIM: Control Optimisation Calc. Var. 10(1), 142–167 (2004)

    MathSciNet  Google Scholar 

  18. Polyak, B.T.: Introduction to Optimization. Optimization Software. Inc., Publications Division, New York (1987)

    Google Scholar 

  19. Vanselow, R.: About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the poisson equation. Appl. Math. 46(1), 13–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiya Hu.

Additional information

Communicated by: Silas Alben.

Qiya Hu was supported by the Major Research Plan of Natural Science Foundation of China G91130015, The Key Project of Natural Science Foundation of China G11031006 and National Basic Research Program of China G2011309702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Yuan, L. A newton-penalty method for a simplified liquid crystal model. Adv Comput Math 40, 201–244 (2014). https://doi.org/10.1007/s10444-013-9305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9305-4

Keywords

AMS subject classifications

Navigation