Skip to main content
Log in

Jacobian-predictor-corrector approach for fractional differential equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a novel predictor-corrector method, called Jacobian-predictor-corrector approach, for the numerical solutions of fractional ordinary differential equations, which are based on the polynomial interpolation and the Gauss-Lobatto quadrature w.r.t. the Jacobi-weight function \(\omega (s)=(1-s)^{\alpha -1} (1+s)^{0}\). This method has the computational cost O(N E ) and the convergent order N I , where N E and N I are, respectively, the total computational steps and the number of used interpolation points. The detailed error analysis is performed, and the extensive numerical experiments confirm the theoretical results and show the robustness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  2. Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293, 511–522 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deng, W.H.: Short memory principle and a predictor-corrector aproach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonl. Anal.: TMA 72, 1768–1777 (2010)

    Article  MATH  Google Scholar 

  6. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential eqations. Nonlinear Dynam. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Nonlinear Dynam. 36, 31–52 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algoritm. 26, 333–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, B.Y., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, B.Y., Wang, L.: Jacobi interpolation approximations and their applications to singular diferential equations. Adv. Comput. Math. 14, 227–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, B.Y., Wang, L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  14. Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comput. 41, 87–102 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463C469 (1985)

    Article  MathSciNet  Google Scholar 

  16. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lubich, C.: A Stability of convolution quadratures for Abel-Voterra integral equations. IMA J. Numer. Anal. 6, 87–101 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  19. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer-Verlag, New York (2000)

    Google Scholar 

  20. Shen, J., Tang, T., Wang, L.L.: Spectral Methods-Algorithms, Analysis and Applications. Springer-Verlag, Berlin (2011)

    MATH  Google Scholar 

  21. Wan, Z.S., Guo, B.Y., Wang, Z.Q.: Jacobi pseudospectral method for fourth order problems. J. Comput. Math. 24, 481–500 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Communicated by: A. Zhou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Deng, W. Jacobian-predictor-corrector approach for fractional differential equations. Adv Comput Math 40, 137–165 (2014). https://doi.org/10.1007/s10444-013-9302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9302-7

Keywords

Mathematics Subject Classifications (2010)

Navigation