Skip to main content
Log in

A domain decomposition method for two-body contact problems with Tresca friction

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper analyzes a continuous and discrete version of the Neumann-Neumann domain decomposition algorithm for two-body contact problems with Tresca friction. Each iterative step consists of a linear elasticity problem for one body with displacements prescribed on a contact part of the boundary and a contact problem with Tresca friction for the second body. To ensure continuity of contact stresses, two auxiliary Neumann problems in each domain are solved. Numerical experiments illustrate the performace of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Engrg. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avery, P., Farhat, C.: The FETI family of domain decomposition methods for inequality-constrained quadratic programming: application to contact problems with conforming and nonconforming interface. Comput. Methods Appl. Mech. Engrg. 198, 1673–1683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bayada, G., Sabil, J., Sassi, T.: Neumann-Dirichlet algorithm for unilateral contact problems: convergence results. C.R. Acad. Sci. Paris, Ser I 335, 381–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bjorstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23, 1097–1120 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bayada, G., Sabil, J., Sassi, T.: A Neumann-Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Lett. 17, 1153–1159 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaudhary, A.B., Bathe, K.J.: A solution method for static and dynamic analysis of three-dimensional contact problem with friction. Comput. Struct. 24 (1986)

  7. Dostál, Z.: Optimal quadratic programming algorithms: with applications to variational inequalities. SOIA, vol. 23. Springer, New York (2009)

    Google Scholar 

  8. Dostál, Z., Kozubek, T., Horyl, P., Brzobohatý T., Markopoulos, A.: Scalable FETI algorithm for two dimensional multibody contact problems with friction. J. Comput. Appl. Math. 235, 403–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dostál, Z., Schőberl, J.: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl. 30, 23–44 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Dyyak, I.I., Prokopyshyn, I.I.: Convergence of the Neumann parallel scheme of the domain decomposition method for problems of frictionless contact between several elastic bodies. J. Math. Sci. 171, 516–533 (2010)

    Article  MathSciNet  Google Scholar 

  11. Eck, C., Wohlmuth, B.A.: Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Mod. Meth. Appl. Sci. 8, 1103–1118 (2003)

    Article  MathSciNet  Google Scholar 

  12. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical analysis of variational inequalities. North-Holland (1981)

  13. Golub, G., Van Loan, C.F.: Matrix computations, MD. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  14. Haslinger, J., Hlaváček, I., Nečas, J.: Handbook of Numerical Analysis, Elsevier Science (Eds. P.G. Ciarlet and J.L. Lions), vol. IV-part2, 313-485 (1996)

  15. Haslinger, J., Dostál, Z., Kučera, R.: On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg. 191, 2261–2281 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haslinger, J., Kučera, R., Sassi, T.: A domain decomposition algorithm for contact problems: analysis and implementation. Math. Model. Nat. Phenom. 1, 123–146 (2009)

    Article  Google Scholar 

  17. Haslinger, J., Kučera, R. , Sassi, T.: A domain decomposition algorithm for contact problems with Coulomb’s friction, submitted to Domain Decomposition Methods in Science and Engineering XXI Series: Lecture Notes in Computational Science and Engineering (2012)

  18. Hüeber, S., Stadler, G., Wohlmuth, B.I.: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30, 527–596 (2008)

    Article  Google Scholar 

  19. Ipopa, M.A., Sassi, T.: A Robin domain decomposition algorithm for contact problems: convergence results. Lect. Notes Comput. Sci. Eng. 70, 145–152 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kikuchi, N., Oden, J.: Contact problems in elasticity. A study of variational inequalities and finite element methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  21. Klarbring, A.: A mathematical programming approach to three-dimensional contact problems with friction. Comput. Methods Appl. Mech. Engrg. 58, 175–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Koko, J.: Uzawa bloc relaxation domain decomposition method for a two-body frictionless contact problem. App. Math. Lett. 22, 1534–1538 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krause, R., Wohlmuth, B.A.: Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5, 139–148 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krause, R.: A non-smooth multiscale method for solving frictional two-body contact problems in 2D and 3D with multigrid efficiency. SIAM J. Sci. Comput. 31, 1399–1423 (2009)

    Article  MATH  Google Scholar 

  25. Kučera, R.: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J. Optim. 19, 846–862 (2009)

    Google Scholar 

  26. Kunisch, K., Stadler, G.: Generalized Newton methods for the 2d-Signorini contact problem with friction in function spaces. Math. Model. Numer. Anal. 39, 827–854 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Laursen, T.A.: Computational contact and impact mechanics. Springer, London (2002)

    MATH  Google Scholar 

  28. Nečas, J.: Les methodes directes en theorie des equations elliptiques, Academia, Praha, and Masson et Cie, Editeurs, Paris (1967)

  29. Riton, J., Sassi, T., Kučera, R.: On domain decomposition algorithms for contact problems with Tresca friction. Lect. Notes Comput. Sci. Eng. 78, 367–374 (2011)

    Article  Google Scholar 

  30. Sassi, T., Ipopa, M.A., Roux, F-X.: Generalization of Lion’s nonoverlapping domain decomposition method for contact probs. Lect. Notes Comput. Sci. Eng. 60, 623–630 (2008)

    Article  MathSciNet  Google Scholar 

  31. Simo, J.C., Laursen, T.A.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zavarise, G., Wriggers, P.: A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput. 16, 88–119 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Kučera.

Additional information

Communicated by: K. Urban

This work was supported by the European Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 and by the grant P201/12/0671 of the Grant Agency of the Czech Republic. A part of this research was done in the frame of the ERASMUS programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslinger, J., Kučera, R., Riton, J. et al. A domain decomposition method for two-body contact problems with Tresca friction. Adv Comput Math 40, 65–90 (2014). https://doi.org/10.1007/s10444-013-9299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9299-y

Keywords

Mathematics Subject Classification (2010)

Navigation