Skip to main content
Log in

Constructing all self-adjoint matrices with prescribed spectrum and diagonal

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The Schur–Horn Theorem states that there exists a self-adjoint matrix with a given spectrum and diagonal if and only if the spectrum majorizes the diagonal. Though the original proof of this result was nonconstructive, several constructive proofs have subsequently been found. Most of these constructive proofs rely on Givens rotations, and none have been shown to be able to produce every example of such a matrix. We introduce a new construction method that is able to do so. This method is based on recent advances in finite frame theory which show how to construct frames whose frame operator has a given prescribed spectrum and whose vectors have given prescribed lengths. This frame construction requires one to find a sequence of eigensteps, that is, a sequence of interlacing spectra that satisfy certain trace considerations. In this paper, we show how to explicitly construct every such sequence of eigensteps. Here, the key idea is to visualize eigenstep construction as iteratively building a staircase. This visualization leads to an algorithm, dubbed Top Kill, which produces a valid sequence of eigensteps whenever it is possible to do so. We then build on Top Kill to explicitly parametrize the set of all valid eigensteps. This yields an explicit method for constructing all self-adjoint matrices with a given spectrum and diagonal, and moreover all frames whose frame operator has a given spectrum and whose elements have given lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur–Horn theorem for operators and frames with prescribed norms and frame operator. Illinois J. Math. 51, 537–560 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Batson, J., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers. In: STOC 09: Proc. 41st Annu. ACM Symp. Theory Comput., pp. 255–262 (2009)

  3. Bendel, R.B., Mickey, M.R.: Population correlation matrices for sampling experiments. Commun. Stat. Simul. Comput. 7, 163–182 (1978)

    Article  Google Scholar 

  4. Bodmann, B.G., Casazza, P.G.: The road to equal-norm Parseval frames. J. Funct. Anal. 258, 397–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. (to appear). arXiv:1106.0921

  6. Casazza, P.G., Fickus, M., Mixon, D.G.: Auto-tuning unit norm tight frames. Appl. Comput. Harmon. Anal. 32, 1‒15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casazza, P.G., Leon, M.: Existence and construction of finite tight frames. J. Comput. Appl. Math. 4, 277–289 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Chan, N.N., Li, K.-H.: Diagonal elements and eigenvalues of a real symmetric matrix. J. Math. Anal. Appl. 91, 562–566 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chu, M.T.: Constructing a Hermitian matrix from its diagonal entries and eigenvalues. SIAM J. Matrix Anal. Appl. 16, 207–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davies, P.I., Higham, N.J.: Numerically stable generation of correlation matrices and their factors. BIT 40, 640–651 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dhillon, I.S., Heath, R.W., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27, 61–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Fickus, M., Mixon, D.G., Poteet, M.J.: In: Proc. SPIE 8138, 81380Q/1–8 (2011)

  16. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in \({\mathbb R}^N\): analysis, synthesis, and algorithms. IEEE Trans. Inform. Theory 44, 16–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Higham, N.J.: Matrix nearness problems and applications. In: Gover, M.J.C., Barnett, S. (eds.) Applications of Matrix Theory, pp. 1–27. Oxford University Press (1989)

  19. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76, 620–630 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  22. Leite, R.S., Richa, T.R.W., Tomei, C.: Geometric proofs of some theorems of Schur–Horn type. Linear Algebra Appl. 286, 149–173 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Massey, P., Ruiz, M.: Tight frame completions with prescribed norms. Sampl. Theory Signal Image Process. 7, 1–13 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Schur, I.: Über eine klasse von mittelbildungen mit anwendungen auf die determinantentheorie. Sitzungsber. Berl. Math. Ges. 22, 9–20 (1923)

    Google Scholar 

  25. Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parameterizations. J. Fourier Anal. Appl. 17, 821–853 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tropp, J.A., Dhillon, I.S., Heath, R.W.: Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Trans. Inform. Theory 50, 2916–2921 (2004)

    Article  MathSciNet  Google Scholar 

  27. Viswanath, P., Anantharam, V.: Optimal sequences and sum capacity of synchronous CDMA systems. IEEE Trans. Inform. Theory 45, 1984–1991 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Fickus.

Additional information

Communicated by: Raymond Chan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fickus, M., Mixon, D.G., Poteet, M.J. et al. Constructing all self-adjoint matrices with prescribed spectrum and diagonal. Adv Comput Math 39, 585–609 (2013). https://doi.org/10.1007/s10444-013-9298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9298-z

Keywords

Mathematics Subject Classification (2010)

Navigation