Skip to main content
Log in

Interpolation and cubature approximations and analysis for a class of wideband integrals on the sphere

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose, analyze, and implement interpolatory approximations and Filon-type cubature for efficient and accurate evaluation of a class of wideband generalized Fourier integrals on the sphere. The analysis includes derivation of (i) optimal order Sobolev norm error estimates for an explicit discrete Fourier transform type interpolatory approximation of spherical functions; and (ii) a wavenumber explicit error estimate of the order \(\mathcal {O}(\kappa ^{-\ell } N^{-r_{\ell }})\), for \(\ell = 0, 1, 2\), where \(\kappa \) is the wavenumber, \(2N^2\) is the number of interpolation/cubature points on the sphere and \(r_{\ell }\) depends on the smoothness of the integrand. Consequently, the cubature is robust for wideband (from very low to very high) frequencies and very efficient for highly-oscillatory integrals because the quality of the high-order approximation (with respect to quadrature points) is further improved as the wavenumber increases. This property is a marked advantage compared to standard cubature that require at least ten points per wavelength per dimension and methods for which asymptotic convergence is known only with respect to the wavenumber subject to stable of computation of quadrature weights. Numerical results in this article demonstrate the optimal order accuracy of the interpolatory approximations and the wideband cubature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Academic, New York (2003)

    MATH  Google Scholar 

  2. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York (2012)

    Book  Google Scholar 

  3. Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43(1–2), 53–80 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover, New York (1986)

    Google Scholar 

  5. Brenner, S., Scott, R.L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin Heidelberg New York (2002)

    Book  MATH  Google Scholar 

  6. Cheng, H., Crutchfield, W., Gimbutas, Z., Greengard, L., Ethridge, J., Huang, V.R., Yarvin, N., Zhao, J.: A wideband fast multipole method for the Helmholtz equations in three dimensions. J. Comput. Phys. 216, 300–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)

    MATH  Google Scholar 

  8. Dominguez, V., Graham, I.G., Kim, T.: Filon–Clenshaw–Curtis rules for highly-oscillatory integrals with algebraic singularities and stationary points. ArXiv e-print 1207.2283 (2012)

  9. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly-oscillatory integrals. IMA J. Numer. Anal. 31, 1250–1280 (2011)

    Article  Google Scholar 

  10. Domínguez, V., Heuer, N., Sayas, F.: Hilbert scales and Sobolev spaces defined by associated Legendre functions. J. Comput. Appl. Math. 235, 3481–3501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Funaro, D.: Polynomial Approximation of Differential Equations. Springer, Berlin Heidelberg New York (1992)

    MATH  Google Scholar 

  12. Ganesh, M., Graham, I.G., Sivaloganathan, J.: A new spectral boundary integral collocation method for three-dimensional potential problems. SIAM J. Numer. Anal. 35, 778–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ganesh, M., Hawkins, S.C.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganesh, M., Langdon, S., Sloan, I.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204, 363–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ganesh, M., Mhaskar, H.N.: Matrix-free interpolation on the sphere. SIAM J. Numer. Anal. 44, 1314–1331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., et al. (eds.) Handbook of Geomathematics, pp. 1185–1219 (2010)

  17. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44, 1026–1048 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huybrechs, D., Vandewalle, S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comput. 76, 1955–1980 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A., Norsett, S.P.: Efficient quadrature for highly oscillatory integrals using derivatives. Proc. R. Soc. A 461, 1383–1399 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iserles, A., Norsett, S.P.: Quadrature methods for multivariate highly oscillatory integrals using derivatives. Math. Comput. 75, 1233–1258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, T.: Asymptotic and Numerical Methods in High Frequency Scattering. Ph.D. thesis, University of Bath (2012)

  22. Krommer, A., Ueberhuber, C.: Computational Integration. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  23. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Springer, Berlin Heidelberg New York (2001)

    Book  MATH  Google Scholar 

  24. Olver, S.: On the quadrature of multivariate highly oscillatory integrals over non-polytope domains. Numer. Math. 103, 643–665 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Olver, S.: Fast, numerically stable computation of oscillatory integrals with stationary points. BIT Numer. Math. 50, 149–171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Olver, S.: Shifted GMRES for highly oscillatory integrals. Numer. Math. 114, 607–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saranen, J., Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Monographs in Mathematics. Springer, Berlin Heidelberg New York (2002)

    Book  Google Scholar 

  28. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83, 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence, R.I (1975). American Mathematical Society, Colloquium Publications, vol. XXIII

  31. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin Heidelberg New York (2007)

    MATH  Google Scholar 

  32. Vikram, M., Huang, H., Shanker, B., Van, T.: A novel wideband FMM for fast integral equation solution of multiscale problems in electromagnetics. IEEE Trans. Antennas Propag. 57, 2094–2104 (2009)

    Article  MathSciNet  Google Scholar 

  33. Vikram, M., Shanker, B., Seal, S., Aluru, S.: Scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters. IEEE Trans. Antennas Propag. 59, 2565–2577 (2011)

    Article  MathSciNet  Google Scholar 

  34. Wong, R.: Asymptotic Approximations of Integrals. Academic, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgments

Part of this research was carried out during a short visit of the second author to Universidad Pública de Navarra. We thank Drs. Hawkins, Mhaskar, and Sayas for several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Domínguez.

Additional information

Communicated by: I. H. Sloan.

The research of VD and MG was supported, in part, respectively by the MICINN Project MTM2010-21037 and the NSF grant DMS-1216889.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, V., Ganesh, M. Interpolation and cubature approximations and analysis for a class of wideband integrals on the sphere. Adv Comput Math 39, 547–584 (2013). https://doi.org/10.1007/s10444-012-9293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9293-9

Keywords

Mathematics Subject Classifications (2010)

Navigation