Skip to main content
Log in

Convergence and conditioning of a Nyström method for Stokes flow in exterior three-dimensional domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Convergence and conditioning results are presented for the lowest-order member of a family of Nyström methods for arbitrary, exterior, three-dimensional Stokes flow. The flow problem is formulated in terms of a recently introduced two-parameter, weakly singular boundary integral equation of the second kind. In contrast to methods based on product integration, coordinate transformation and singularity subtraction, the family of Nyström methods considered here is based on a local polynomial correction determined by an auxiliary system of moment equations. The polynomial correction is designed to remove the weak singularity in the integral equation and provide control over the approximation error. Here we focus attention on the lowest-order method of the family, whose implementation is especially simple. We outline a convergence theorem for this method and illustrate it with various numerical examples. Our examples show that well-conditioned, accurate approximations can be obtained with reasonable meshes for a range of different geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison, S.A., Tran, V.T.: Modeling the electrophoresis of rigid polyions: application to lysozyme. Biophys. J. 68, 2261–2270 (1995)

    Article  Google Scholar 

  2. Allison, S.A., Mazur, S.: Modeling the free solution electrophoretic mobility of short DNA fragments. Biopolymers 46, 359–373 (1998)

    Article  Google Scholar 

  3. Allison, S.A., Chen, C., Stigter, D.: The length dependence of the translational diffusion, free solution electrophoretic mobility, and electrophoretic tether force of rigid rod-like model duplex DNA. Biophys. J. 81, 2558–2568 (2001)

    Article  Google Scholar 

  4. Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comp. 14, 159–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  6. Anselone, P.M.: Singularity subtraction in the numerical solution of integral equations. J. Austral. Math. Soc. (Series B) 22, 408–418 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aragon, S.: A precise boundary element method for macromolecular transport properties. J. Comp. Chem. 25, 1191–1205 (2004)

    Article  Google Scholar 

  8. Aragon, S., Hahn, D.K.: Precise boundary element computation of protein transport properties: diffusion tensors, specific volume and hydration. Biophys. J. 91, 1591–1603 (2006)

    Article  Google Scholar 

  9. Atkinson, K.E.: The numerical solution of Laplace’s equation in three dimensions. SIAM J. Num. Anal. 19, 263–274 (1982)

    Article  MATH  Google Scholar 

  10. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press (1997)

    Book  MATH  Google Scholar 

  11. Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Techniques. Springer-Verlag (1984)

  12. Brody, J.P., Yager, P., Goldstein, R.E., Austin, R.H.: Biotechnology at low Reynolds numbers. Biophysical J. 71, 3430–3441 (1996)

    Article  Google Scholar 

  13. Brody, J.P., Yager, P.: Diffusion-based extraction in a microfabricated device. Sens. Actuators, A 58 13–18 (1997)

    Article  Google Scholar 

  14. Brune, D., Kim, S.: Predicting protein diffusion coefficients. Proc. Natl. Acad. Sci. USA 90, 3835–3839 (1993)

    Article  Google Scholar 

  15. Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests and applications. J. Comput. Phys. 169, 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Canino, L.F., Ottusch, J.J., Stalzer, M.A., Visher, J.L., Wandzura, S.M.: Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization. J. Comput. Phys. 146, 627–663 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part II, W.H. Freeman Publishing (1980)

  18. Chen, G., Zhou, J.: Boundary Element Methods. Academic Press (1992)

  19. Chou, C.-F., Bakajin, O., Turner, S.W.P., Duke, T.A.J., Chan, S.S., Cox, E.C., Craighead, H.G., Austin, R.H.: Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation. Proc. Natl. Acad. Sci. USA 96, 13762–13765 (1999)

    Article  Google Scholar 

  20. Chou, H.-P., Unger, M.A., Quake, S.R.: A microfabricated rotary pump. Biomed. Microdevices 3, 323–330 (2001)

    Article  Google Scholar 

  21. Duke, T.A.J., Austin, R.H.: Microfabricated sieve for the continuous sorting of macromolecules. Phys. Rev. Lett. 80, 1552–1555 (1998)

    Article  Google Scholar 

  22. Finn, R.: On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ganesh, M., Graham, I.G., Sivaloganathan, J.: A new spectral boundary integral collocation method for three-dimensional potential problems. SIAM J. Numer. Anal. 35, 778–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Goldberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications (1997)

  25. Gonzalez, O., Li, J.: Modeling the sequence-dependent diffusion coefficients of short DNA sequences. J. Chem. Phys. 129, 165105 (2008)

    Article  Google Scholar 

  26. Gonzalez, O.: On stable, complete and singularity-free boundary integral formulations of exterior Stokes flow. SIAM J. Appl. Math. 69, 933–958 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gonzalez, O., Li, J.: On the hydrodynamic diffusion of rigid particles of arbitrary shape with application to DNA. SIAM J. Appl. Math. 70, 2627–2651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gonzalez, O., Li, J.: A convergence theorem for a class of Nyström methods for weakly singular integral equations on surfaces in ℝ3. arXiv:1205.5064 (submitted)

  29. Graham, I.G., Sloan, I.H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ℝ3. Numer. Math. 92, 289–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Günter, N.M.: Potential Theory. Frederick Ungar Publishing (1967)

  31. Hebeker, F.K.: A boundary element method for Stokes equations in 3-D exterior domains. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications V, pp. 257–263 (1985)

  32. Heywood, J.G.: On uniqueness questions in the theory of viscous flow. Acta Math. 136, 61–102 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hsiao, G.C., Wendland, W.L.: Boundary integral equations. Applied Mathematical Sciences, vol. 164. Springer-Verlag (2008)

  34. Kamholz, A.E., Weigl, B.H., Finlayson, B.A., Yager, P.: Quantitative analysis of molecular interaction in a microfluidic channel: the t-Sensor. Anal. Chem. 71, 5340–5347 (1999)

    Article  Google Scholar 

  35. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Interscience (1958)

  36. Kim, S., Karrila, S.J.: Microhydrodynamics. Butterworth-Heinemann Publishing (1991)

  37. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer-Verlag (1989)

  38. Kunyansky, L.A., Bruno, O.P.: A Fast, High-Order Algorithm for the Solution of Surface Scattering Problems II: Theoretical considerations. (submitted)

  39. Kurganov, A., Rauch, J.: The order of accuracy of quadrature formulae for periodic functions. In: Bove, A., Del Santo, D., Murthy, M.K.V. (eds.) Progress in Nonlinear Differential Equations and Their Applications, vol. 78, pp. 155–159. Birkhäuser (2009)

  40. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Revised English Edition, Gordon and Breach (1963)

  41. Lage, C., Schwab, C.: Wavelet Galerkin algorithms for boundary integral equations. SIAM J. Sci. Comput. 20, 2195–2222 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levy, S.L., Craighead, H.G.: DNA manipulation, sorting, and mapping in nanofluidic systems. Chem. Soc. Rev. 39, 1133–1152 (2010)

    Article  Google Scholar 

  43. Li, J.: A computational model for the diffusion coefficients of DNA with applications. Ph.D. Dissertation, The University of Texas at Austin (2010)

  44. Martin, P.A.: Multiple Scattering, Encyclopedia of Mathematics and its Applications. Cambridge University Press, vol. 107 (2006)

  45. Meagher, R.J., Won, J.-I., McCormick, L.C., Nedelcu, S., Bertrand, M.M., Bertram, J.L., Drouin, G., Barron, A.E., Slater, G.W.: End-labeled free-solution electrophoresis of DNA. Electrophoresis 26, 331–350 (2005)

    Article  Google Scholar 

  46. Meagher, R.J., Won, J.-I., Coyne, J.A., Lin, J., Barron, A.E.: Sequencing of DNA by free-solution capillary electrophoresis using a genetically engineered protein polymer drag-tag. Anal. Chem. 80, 2842–2848 (2008)

    Article  Google Scholar 

  47. Mikhlin, S.G.: Linear integral equations. International Monographs on Advanced Mathematics and Physics. Hindustan Publishing Corporation (1960)

  48. Mikhlin, S.G.: Multidimensional singular integrals and integral equations. International Series of Monographs in Pure and Applied Mathematics, vol. 83. Pergamon Press (1965)

  49. Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Springer-Verlag (1986)

  50. Odqvist, F.K.G.: Über die randwertaufgaben der hydrodynamik zäher flüssigkeiten. Math. Zeit. 32, 329–375 (1930)

    Article  MathSciNet  Google Scholar 

  51. O’Neill, B.: Elementary Differential Geometry. Academic Press (1966)

  52. Power, H., Miranda, G.: Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape. SIAM J. Appl. Math. 47, 689–698 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. Power, H., Wrobel, L.C.: Boundary Integral Methods in Fluid Mechanics. Computational Mechanics Publications (1995)

  54. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press (1992)

  55. Quake, S.R., Scherer, A.: From micro- to nano-fabrication with soft materials. Science 290, 1536–1540 (2000)

    Article  Google Scholar 

  56. Rathsfeld, A.: Quadrature methods for 2D and 3D problems. J. Comput. Appl. Math. 125, 439–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Schilling, E.A., Kamholz, A.E., Yager, P.: Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804 (2002)

    Article  Google Scholar 

  58. Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)

    Article  Google Scholar 

  59. Stone, H.A., Kim, S.: Microfluidics: basic issues, applications, and challenges. AIChE J. 47, 1250–1254 (2001)

    Article  Google Scholar 

  60. Tanford, C.: Physical Chemistry of Macromolecules. Wiley (1961)

  61. Tausch, J., White, J.: Multiscale bases for the sparse representation of boundary integral operators on complex geometry. SIAM J. Sci. Comput. 24, 1610–1629 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Whitesides, G.M., Stroock, A.D.: Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001)

    Article  Google Scholar 

  63. Yamakawa, H.: Modern Theory of Polymer Solutions. Harper & Row (1971)

  64. Ying, L., Biros, G., Zorin, D.: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains. J. Comput. Phys. 219, 247–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gonzalez.

Additional information

Communicated by: Ian H. Sloan.

This work was supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Gonzalez, O. Convergence and conditioning of a Nyström method for Stokes flow in exterior three-dimensional domains. Adv Comput Math 39, 143–174 (2013). https://doi.org/10.1007/s10444-012-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9272-1

Keywords

Mathematics Subject Classifications (2010)

Navigation