Skip to main content
Log in

Preconditioning non-monotone gradient methods for retrieval of seismic reflection signals

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The core problem in seismic exploration is to invert the subsurface reflectivity from the surface recorded seismic data. However, most of the seismic inverse problems are ill-posed by nature. To overcome the ill-posedness, different regularized least squares methods are introduced in the literature. In this paper, we developed a preconditioning non-monotone gradient method, proved it converges with R-superlinear rate and applied it to seismic deconvolution and imaging. Numerical examples demonstrate that the method is efficient. It helps to improve the resolution of the seismic inversions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980)

    Google Scholar 

  2. Backus, G., Gilbert, J.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. 13, 247–276 (1967)

    Google Scholar 

  3. Backus, G., Gilbert, J.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. 16, 169–205 (1968)

    MATH  Google Scholar 

  4. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bevc, D., Ortigosa, F., Guitton, A., Kaelin, B.: Next generation seismic imaging: high fidelity algorithms and high-end computing. In: AGU General Assembly, Acapulo, Mexico (2007)

  6. Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112, 315–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher, R.: On the Barzilai–Borwein Method. University of Dundee Report NA/207 (2001)

  8. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  9. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  10. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  11. Lanczos, C.: Linear Differential Operators. Van Nostrand, New York (1961)

    MATH  Google Scholar 

  12. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2, 164–166 (1944)

    MathSciNet  MATH  Google Scholar 

  13. Liu, H., He. L.: Pseudo-differential operator and inverse scattering of multi-dimensional wave equation. In: Wang, Y.F., Yagola, A., Yang, C. (eds.) Optimization and Regularization for Computational Inverse Problems and Applications, pp. 301–325. Springer/Higher Education Press, Berlin/Beijing (2010)

    Chapter  Google Scholar 

  14. Margrave, G.F., Lamoureux, M.P., Grossman, J.P., Iliescu, V.: Gabor deconvolution of seismic data for source waveform and Q correction. In: SEG Extended Abstracts, pp. 2190–2193 (2002)

  15. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear inequalities. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Molina, B., Raydan, M.: Preconditioned Barzilai–Borwein method for the numerical solution of partial differential equations. Numer. Algorithms 13, 45–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York (1993)

    Book  Google Scholar 

  18. Nemeth, T., Wu, C.J., Schuster, G.T.: Least-squares migration of incomplete reflection data. Geophysics 64(1), 208–221 (1999)

    Article  Google Scholar 

  19. Nolet, G.: Solving or resolving inadequate noisy tomographic systems. J. Comput. Phys., 61, 463–482 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nolet, G., Snieder, R.: Solving large linear inverse problems by projection. Geophys. J. Int. 103, 565–568 (1990)

    Article  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2000)

    Google Scholar 

  22. Sacchi, M.D., Wang, J., Kuehl, H.: Regularized migration/inversion: new generation of imaging algoritihms. CSEG Recorder 31(special edition), 54–59 (2006)

    Google Scholar 

  23. Sjøerg, T., Gelius, L.-J., Lecomte, I.: 2D deconvolution of seismic image blur. In: Expanded Abstracts, SEG 73nd Annual Meeting, Dallas (2003)

  24. Tarantola, A.: Inverse Problems Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam (1987)

    Google Scholar 

  25. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  26. Trampert, J., Leveque, J.J.: Simultaneous iterative reconstruction technique: physical interpretation based on the generalized least squares solution. J. Geophys. Res. 95, 12553–12559 (1990)

    Article  Google Scholar 

  27. Treitel, S., Lines, L.R.: Past, present, and future of geophysical inversion-a new millennium analysis. Geophysics 66, 21–24 (2001)

    Article  Google Scholar 

  28. Ulrych, T.J., Sacchi, M.D., Grau, M.: Signal and noise separation: art and science. Geophysics 64, 1648–1656 (1999)

    Article  Google Scholar 

  29. Ulrych, T.J., Sacchi, M.D., Woodbury, A.: A Bayesian tour to inversion. Geophysics 66, 55–69 (2000)

    Article  Google Scholar 

  30. Valenciano, A., Biondi, B., Guitton, A.: Target oriented wave-equation inversion. Geophysics 71, A35–A38 (2006)

    Article  Google Scholar 

  31. VanDecar, J.C., Snieder, R.: Obtaining smooth solutions to large linear inverse problems. Geophysics 59, 818–829 (1994)

    Article  Google Scholar 

  32. Wang, Y.F.: Computational Methods for Inverse Problems and Their Applications. Higher Education Press, Beijing (2007)

    Google Scholar 

  33. Wang, Y.F., Ma, S.Q.: Projected Barzilai–Borwein methods for large scale nonnegative image restorations. Inverse Probl. Sci. Eng. 15(6), 559–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y.F., Yang, C.C.: Accelerating migration deconvolution using a non-monotone gradient method. Geophysics 75(4), S131–S137 (2010)

    Article  Google Scholar 

  35. Wang, Y.F., Yuan, Y.X.: Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems. Inverse Probl. 21, 821–838 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Y.F., Yang, C.C., Li, X.W.: A regularizing kernel-based brdf model inversion method for ill-posed land surface parameter retrieval using smoothness constraint. J. Geophys. Res. 113, D13101 (2008)

    Article  Google Scholar 

  37. Wang, Y.F., Yang, C.C., Duan, Q.L.: On iterative regularization methods for seismic migration inversion imaging. Chin. J. Geophys. 52(3), 1615–1624 (2009)

    Google Scholar 

  38. Xiao, T.Y., Yu, S.G., Wang, Y.F.: Numerical Methods for Solution of Inverse Problems. Science Press, Beijing (2003)

    Google Scholar 

  39. Wang, Y.F., Stepanova, I.E., Titarenko, V.N., Yagola, A.G.: Inverse Problems in Geophysics and Solution Methods. Higher Eduacaiton Press, Beijing (2011)

    Google Scholar 

  40. Xu, S.F.: Theory and Methods for Matrix Computation. Beijing University Press, Beijing (1995)

    Google Scholar 

  41. Yu, J.H., Hu, J.X., Schuster, G.T., Estill, R.: Prestack migration deconvolution. Geophysics 71(2), S53–S62 (2006)

    Article  Google Scholar 

  42. Yuan, Y.X.: Numerical Methods for Nonliear Programming. Shanghai Science and Technology Publication, Shanghai (1993)

    Google Scholar 

  43. Yuan, Y.X.: Step-sizes for the gradient method. In: Proceedings of the Third International Congress of Chinese Mathematicians, AMS/IP Studies in Advanced Mathematics, pp. 785–796 (2008)

  44. Yuan, Y.X.: Gradient methods for large scale convex quadratic functions. In: Wang, Y.F., Yagola, A., Yang, C. (eds.) Optimization and Regularization for Computational Inverse Problems & Applications, pp. 141–155. Springer/Higher Education Press, Berlin/Beijing (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Wang.

Additional information

Communicated by Yuesheng Xu and Hongqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.F. Preconditioning non-monotone gradient methods for retrieval of seismic reflection signals. Adv Comput Math 36, 353–376 (2012). https://doi.org/10.1007/s10444-011-9207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9207-2

Keywords

Mathematics Subject Classifications (2010)

Navigation