Skip to main content
Log in

Second-order topological expansion for electrical impedance tomography

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Second-order topological expansions in electrical impedance tomography problems with piecewise constant conductivities are considered. First-order expansions usually consist of local terms typically involving the state and the adjoint solutions and their gradients estimated at the point where the topological perturbation is performed. In the case of second-order topological expansions, non-local terms which have a higher computational cost appear. Interactions between several simultaneous perturbations are also considered. The study is aimed at determining the relevance of these non-local and interaction terms from a numerical point of view. A level set based shape algorithm is proposed and initialized by using topological sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Kang, H.: High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34(5), 1152–1166 (electronic) (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, H., Moskow, S., Vogelius, M.S.: Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM Control Optim. Calc. Var. 9, 49–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnaillie-Noël, V., Dambrine, M., Tordeux, S., Vial, G.: On moderately close inclusions for the Laplace equation. C. R. Math. Acad. Sci. Paris 345(11), 609–614 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Bonnet, M.: Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions. Int. J. Solids Struct. 46(11–12), 2275–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99–R136 (2002)

    Article  MathSciNet  Google Scholar 

  6. Brühl, M., Hanke, M., Vogelius, M.S.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93(4), 635–654 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cedio-Fengya, D.J., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Probl. 14(3), 553–595 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (electronic) (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, E.T., Chan, T.F., Tai, X.-C.: Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205(1), 357–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Faria, J.R., Novotny, A.A., Feijóo, R.A., Taroco, E., Padra, C.: Second order topological sensitivity analysis. Int. J. Solids Struct. 44(14–15), 4958–4977 (2007)

    Article  MATH  Google Scholar 

  11. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries. In: Advances in Design and Control, vol. 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

  12. Eschenauer, H., Kobelev, V., Schumacher, A.: Bubble method for topology and shape optimization of structures. J. Struct. Optim. 8, 42–51 (1994)

    Article  Google Scholar 

  13. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (electronic) (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. In: Frontiers in Mathematics. Birkhäuser, Basel (2006)

    Google Scholar 

  15. Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)

    MATH  Google Scholar 

  16. Il′in, A.M.: Matching of asymptotic expansions of solutions of boundary value problems. In: Transl. Math. Monog., vol. 102. American Mathematical Society, Providence (1992)

    Google Scholar 

  17. Mazja, W.G., Nasarow, S.A., Plamenewski, B.A.: Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I. In: Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien, vol. 82. Akademie, Berlin (1991)

  18. Nazarov, S.A., Sokolowski, J.: Spectral problems in shape optimization. Singular boundary perturbations. Asymptot. Anal. 56(3–4), 159–196 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Nazarov, S.A., Sokolowski, J.: Shape sensitivity analysis of eigenvalues revisited. Control Cybern. 37(4), 999–1012 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. In: Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Google Scholar 

  21. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (electronic) (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sokołowski, , Zolésio, J.-P.: Introduction to shape optimization. In: Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992). Shape sensitivity analysis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hintermüller.

Additional information

Communicated by Yuesheng Xu and Hongqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintermüller, M., Laurain, A. & Novotny, A.A. Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36, 235–265 (2012). https://doi.org/10.1007/s10444-011-9205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9205-4

Keywords

AMS 2000 Subject Classifications

Navigation