Skip to main content
Log in

Numerical integration with polynomial exactness over a spherical cap

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents rules for numerical integration over spherical caps and discusses their properties. For a spherical cap on the unit sphere \(\mathbb{S}^2\), we discuss tensor product rules with n 2/2 + O(n) nodes in the cap, positive weights, which are exact for all spherical polynomials of degree ≤ n, and can be easily and inexpensively implemented. Numerical tests illustrate the performance of these rules. A similar derivation establishes the existence of equal weight rules with degree of polynomial exactness n and O(n 3) nodes for numerical integration over spherical caps on \(\mathbb{S}^2\). For arbitrary d ≥ 2, this strategy is extended to provide rules for numerical integration over spherical caps on \(\mathbb{S}^d\) that have O(n d) nodes in the cap, positive weights, and are exact for all spherical polynomials of degree ≤ n. We also show that positive weight rules for numerical integration over spherical caps on \(\mathbb{S}^d\) that are exact for all spherical polynomials of degree ≤ n have at least O(n d) nodes and possess a certain regularity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

  2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  3. Bernstein, S.N.: Sur les formules de quadrature de Cotes et Tchebycheff. C. R. Acad. Sci. URSS (Dokl. Akad. Nauk SSSR), N. S. 14, 323–327 (1937)

    Google Scholar 

  4. Bernstein, S.N.: On quadrature formulas with positive coefficients. Izv. Akad. Nauk. SSSR, Ser. Mat. 1(4), 479–503 (1937, Russian)

    Google Scholar 

  5. Bernstein, S.N.: Sur un système d’équations indéterminées. J. Math. Pures Appl. 17(9), 179–186 (1938)

    MATH  Google Scholar 

  6. Bondarenko, A.V., Viazovska, M.S.: New asymptotic estimates for spherical designs. J. Approx. Theory 152, 101–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, G., Dai, F., Sun, Y.S.: Kolmogorov widths of classes of smooth functions on the sphere S d − 1. J. Complex. 18, 1001–1023 (2002)

    Article  MATH  Google Scholar 

  8. Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44(6), 2326–2341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, F., Wang, H.: Positive cubature formulas and Marcinkiewicz–Zygmund inequalities on spherical caps. Constr. Approximation 31, 1–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdélyi, A. (ed.), Magnus, W., Oberhettinger, F., Tricomi, F.G. (research associates): Higher Transcendental Functions, vol. 2. Bateman Manuscript Project, California Institute of Technology. McGraw-Hill, New York, Toronto, London (1953)

  12. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart, Leipzig (1999)

  13. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  14. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  15. Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesse, K.: Complexity of numerical integration over spherical caps in a Sobolev space setting. J. Complex. 27, 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hesse, K., Sloan, I.H.: Optimal order integration on the sphere. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics, Series in Contemporary Applied Mathematics CAM 6, pp. 59–70. Higher Education Press and World Scientific (2005)

  18. Korevaar, J.: Chebyshev-type quadratures; use of complex analysis and potential theory. In: Gauthier, P.M. (ed.), Sabidussi, G. (techn. ed.) Complex Potential Theory, pp. 325–364. Kluwer Academic Publishers, Dordrecht, Boston (1994)

    Google Scholar 

  19. Korevaar, J., Meyers, J.L.H.: Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transforms Spec. Funct. 1(2), 105–117 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuijlaars, A.: The minimal number of nodes in Chebyshev-type quadrature formulas. Indag. Math. N. S., 4(3), 339–362 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Markov, A.A.: On a problem of D.I. Mendeleev. In: Selected Works (in Russian), GITTL, Moscow-Leningrad (1948)

  22. Mhaskar, H.N.: Local quadrature formulas on the sphere. J. Complex. 20, 753–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mhaskar, H.N.: Local quadrature formulas on the sphere, II. In: Neamtu, M., Saff, E.B. (eds.) Advances in Constructive Approximation, pp. 333–344. Nashboro Press, Nashville (2004)

    Google Scholar 

  24. Mhaskar, H.N.: Weighted quadrature formulas and approximation by zonal function networks on the sphere. J. Complex. 22, 348–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2001) (Corrigendum: Math. Comput. 71, 453–454 (2002))

    MathSciNet  MATH  Google Scholar 

  26. Petrushev, P.P.: Approximation by ridge functions and neural networks. SIAM J. Math. Anal. 30, 155–189 (1998)

    Article  MathSciNet  Google Scholar 

  27. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reimer, M.: Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel, Boston, Berlin (2003)

    Book  MATH  Google Scholar 

  29. Sansone, G.: Orthogonal Functions. Interscience Publishers, London, New York (1959)

    MATH  Google Scholar 

  30. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sloan, I.H., Womersley, R.S.: A variational characterization of spherical designs. J. Approx. Theory 159, 308–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Inc., Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  33. Szegö, G.: Orthogonal polynomials. In: American Mathematical Society Colloquium Publications, 4th edn., vol. 23. American Mathematical Society, Providence, Rhode Island (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hesse.

Additional information

Communicated by I. H. Sloan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, K., Womersley, R.S. Numerical integration with polynomial exactness over a spherical cap. Adv Comput Math 36, 451–483 (2012). https://doi.org/10.1007/s10444-011-9187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9187-2

Keywords

Mathematics Subject Classifications (2010)

Navigation