Skip to main content
Log in

On a class of non-uniform average sampling expansions and partial reconstruction in subspaces of L 2(ℝ)

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let ϕ be a function in the Wiener amalgam space \(\emph{W}_{\infty}(L_1)\) with a non-vanishing property in a neighborhood of the origin for its Fourier transform \(\widehat{\phi}\), \({\bf \tau}=\{\tau_n\}_{n\in {{\mathbb Z}}}\) be a sampling set on ℝ and \(V_\phi^{\bf \tau}\) be a closed subspace of \(L_2(\hbox{\ensuremath{\mathbb{R}}})\) containing all linear combinations of τ-translates of ϕ. In this paper we prove that every function \(f\in V_\phi^{\bf \tau}\) is uniquely determined by and stably reconstructed from the sample set \(L_\phi^{\bf \tau}(f)=\Big\{\int_{\hbox{\ensuremath{\mathbb{R}}}} f(t) \overline{\phi(t-\tau_n)} dt\Big\}_{n\in {{\mathbb Z}}}\). As our reconstruction formula involves evaluating the inverse of an infinite matrix we consider a partial reconstruction formula suitable for numerical implementation. Under an additional assumption on the decay rate of ϕ we provide an estimate to the corresponding error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13(2), 151–161 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A., Gröchenig, K.: Beurling–Landau-type theorems for non uniform sampling in shift invariant spaces. J. Fourier Anal. Appl. 6(1), 93–103 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A., Gröchenig, K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aldroubi, A., Sun, Q., Tang, W.S.: Convolution, average sampling and a Calderon resolution of the identity for shift invariant spaces. J. Fourier Anal. Appl. 11(2), 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atreas, N., Benedetto, J.J., Karanikas, C.: Local sampling for regular wavelet and Gabor expansions. Sampl. Theory Signal Image Process. 2(1), 1–24 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Benedetto, J.J.: Irregular sampling and frames. In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 445–507 (1992)

  7. Butzer, P.L., Splettstöβer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jber d. Dt. Math.-Verein 90, 1–70 (1988)

    MATH  Google Scholar 

  8. Chen, W., Itoh, S., Shiki, J.: Irregular sampling theorems for wavelet subspaces. IEEE Trans. Inform. Theory 44(3), 1131–1142 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cramer, R.J.-M., Scholtz, R.A., Win, M.Z.: Evaluation of an ultra wide-band propagation channel. IEEE Trans. Antennas and Propagation 50(5), 561–570 (2002)

    Article  Google Scholar 

  10. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhaüser, Boston (2003)

    MATH  Google Scholar 

  11. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strans–Fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gröchenig, K., Leinert, M.: Symmetry and inverse closedness of matrix algebras and functional calculus for infinite matrices. Trans. Amer. Math. Soc. 358(6), 2695–2711 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gröchenig, K., Rzeszotnik, Z., Strohmer, T.: Convergence analysis of the finite section method and Banach algebras of matrices. Integral Equations Operator Theory 67(2), 183–202 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  15. Jaffard, S.: Properiétés des matrices bien localisées prés de leur diagonale et quelques applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(5), 461–476 (1990)

    MATH  MathSciNet  Google Scholar 

  16. Liu, Y., Walter, G.: Irregular sampling in wavelet subspaces. J. Fourier Anal. Appl. 2(2), 181–189 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nashed, M.Z., Walter, G.G.: General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Control Signals Systems 4, 363–390 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nashed, M.Z., Sun, Q., Tang, W.-S.: Average sampling in L 2. C. R. Math. Acad. Sci. Paris, 347(17–18), 1007–1010 (2009)

    MATH  MathSciNet  Google Scholar 

  19. Olevskii, A., Ulanovskii, A.: Almost integer translates. Do nice generator exist? J. Fourier Anal. Appl. 10(1), 93–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sun, Q.: Wiener’s lemma for infinite matrices with polynomial off diagonal decay. C. R. Math. Acad. Sci. Paris, 340(8), 567–570 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38(5), 1389–1422 (2006/2007)

    Article  Google Scholar 

  22. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Amer. Math. Soc. 359(7), 3099–3123 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sun, W., Zhou, X.: Average sampling in shift invariant subspaces with symmetric average functions. J. Math. Anal. Appl. 287(1), 279–295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. van der Mee, C.V.M., Nashed, M.Z., Seatzu, S.: Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces. Adv. Comput. Math. 19(4), 355–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  26. Zayed, A.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  27. Zhao, P., Zhao C., Casazza, P.G.: Perturbation of regular sampling in shift-invariant spaces for frames. IEEE Trans. Inform. Theory 52(10), 4643–4648 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos D. Atreas.

Additional information

Communicated by Qiyu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreas, N.D. On a class of non-uniform average sampling expansions and partial reconstruction in subspaces of L 2(ℝ). Adv Comput Math 36, 21–38 (2012). https://doi.org/10.1007/s10444-011-9177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9177-4

Keywords

Mathematics Subject Classifications (2010)

Navigation