Skip to main content
Log in

On the numerical solution of large-scale sparse discrete-time Riccati equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We discuss the numerical solution of large-scale discrete-time algebraic Riccati equations (DAREs) as they arise, e.g., in fully discretized linear-quadratic optimal control problems for parabolic partial differential equations (PDEs). We employ variants of Newton’s method that allow to compute an approximate low-rank factor of the solution of the DARE. The principal computation in the Newton iteration is the numerical solution of a Stein (aka discrete Lyapunov) equation in each step. For this purpose, we present a low-rank Smith method as well as a low-rank alternating-direction-implicit (ADI) iteration to compute low-rank approximations to solutions of Stein equations arising in this context. Numerical results are given to verify the efficiency and accuracy of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, J., Benner, P.: CAREX—a collection of benchmark examples for continuous-time algebraic Riccati equations (version 2.0). SLICOT Working Note 1999-14. Available from www.slicot.org (1999)

  2. Armstrong, E., Rublein, G.T.: A stabilization algorithm for linear discrete constant systems. IEEE Trans. Automat. Contr. AC–21, 629–631 (1976)

    Article  MathSciNet  Google Scholar 

  3. Arnold, W. III, Laub, A.: Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72, 1746–1754 (1984)

    Article  Google Scholar 

  4. Banks, H., Kunisch, K.: The linear regulator problem for parabolic systems. SIAM J. Control Optim. 22, 684–698 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barraud, A.Y.: A numerical algorithm to solve A T X A − X = Q. IEEE Trans. Automat. Contr. AC–22, 883–885 (1977)

    Article  MathSciNet  Google Scholar 

  6. Bartels, R., Stewart, G.: Solution of the matrix equation AX + XB = C: Algorithm 432. Commun. ACM 15, 820–826 (1972)

    Article  Google Scholar 

  7. Benner, P.: Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Logos–Verlag, Berlin, Germany (1997) (also: Dissertation, Fakultät für Mathematik, TU Chemnitz–Zwickau (1997))

  8. Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 14(1), 44–59 (2004)

    Article  MathSciNet  Google Scholar 

  9. Benner, P.: Editorial: large-scale matrix equations of special type (special issue). Numer. Linear Algebra Appl. 15(9), 747–754 (2008)

    Article  MathSciNet  Google Scholar 

  10. Benner, P., Faßbender, H.: Initializing Newton’s method for discrete-time algebraic Riccati equations using the butterfly SZ algorithm. In: Gonzalez, O. (ed.) Proc. 1999 IEEE Intl. Symp. CACSD, Kohala Coast-Island of Hawai’i, Hawai’i, USA, 22–27 August 1999 (CD-Rom), pp. 70–74 (1999)

  11. Benner, P., Faßbender, H.: A hybrid method for the numerical solution of discrete-time algebraic Riccati equations. Contemp. Math. 280, 255–269 (2001)

    Google Scholar 

  12. Benner, P., Faßbender, H., Watkins, D.: SR and SZ algorithms for the symplectic (butterfly) eigenproblem. Linear Algebra Appl. 287, 41–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15(9), 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Numerical solution of discrete stable linear matrix equations on multicomputers. Parallel Algorithms Appl. 17(1), 127–146 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Solving linear-quadratic optimal control problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Byers, R., Mackey, D., Mehrmann, V., Xu, H.: Symplectic, BVD, and palindromic approaches to discrete-time control problems. In: Collection of Papers Dedicated to the 60-th Anniversary of Mihail Konstantinov, pp. 81–102. Publ. House RODINA, Sofia (2009)

  17. Calvetti, D., Levenberg, N., Reichel, L.: Iterative methods for X − AXB = C. J. Comput. Appl. Math. 86(1), 73–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Calvetti, D., Reichel, L.: Application of ADI itertaive methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165–186 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. SLICOT Working Note 2002–2. Available from www.slicot.org (2002)

  20. Chan, T.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987)

    Article  Google Scholar 

  21. Datta, B.: Numerical Methods for Linear Control Systems. Elsevier Academic Press (2004)

  22. Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, New Jersey (1983)

    MATH  Google Scholar 

  23. Faßbender, H.: Symplectic Methods for the Symplectic Eigenproblem. Kluwer Academic/Plenum Publisher (2000)

  24. Feitzinger, F., Hylla, T., Sachs, E.: Inexact Kleinman-Newton method for Riccati equations. SIAM J. Matrix Anal. Appl. 31, 272–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gallivan, K., Rao, X., van Dooren, P.: Singular Riccati equations stabilizing large-scale systems. Linear Algebra Appl. 415, 359–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gardiner, J., Laub, A.: Parallel algorithms for algebraic Riccati equations. Int. J. Control 54(6), 1317–1333 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gardiner, J., Laub, A., Amato, J., Moler, C.: Solution of the Sylvester matrix equation AXB + CXD = E. ACM Trans. Math. Softw. 18, 223–231 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gardiner, J., Wette, M., Laub, A., Amato, J., Moler, C.: Algorithm 705: a Fortran-77 software package for solving the Sylvester matrix equation AXB T + CXD T = E. ACM Trans. Math. Softw. 18, 232–238 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  30. Gugercin, S., Sorensen, D., Antoulas, A.: A modified low-rank Smith method for large-scale Lyapunov equations. Numer. Algorithms 32(1), 27–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hammarling, S.: Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation. Syst. Control Lett. 17, 137–139 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hewer, G.: An iterative technique for the computation of steady state gains for the discrete optimal regulator. IEEE Trans. Automat. Contr. AC–16, 382–384 (1971)

    Article  Google Scholar 

  33. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal. 33, 53–62 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (1985)

  35. Ionescu, V., Oarǎ, C., Weiss, M.: General matrix pencil techniques for the solution of algebraic Riccati equations: a unified approach. IEEE Trans. Automat. Contr. 42(8), 1085–1097 (1997)

    Article  MATH  Google Scholar 

  36. Ito, K.: Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation. SIAM J. Control Optim. 28, 1251–1269 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Contr. AC–13, 114–115 (1968)

    Article  Google Scholar 

  38. Kleinman, D.: Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation. IEEE Trans. Automat. Contr. AC–19, 252–254 (1974)

    Article  MathSciNet  Google Scholar 

  39. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford (1995)

    Google Scholar 

  40. Lasiecka, I., Triggiani, R.: Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. Lecture Notes in Control and Information Sciences, vol. 164. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  41. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  42. Lin, W.W., Xu, S.F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28(1), 26–39 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mehrmann, V.: Existence, uniqueness and stability of solutions to singular, linear-quadratic control problems. Linear Algebra Appl. 121, 291–331 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Lecture Notes in Control and Information Sciences, No. 163. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  45. Mehrmann, V., Tan, E.: Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans. Automat. Contr. 33, 695–698 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pappas, T., Laub, A., Sandell, N.: On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Contr. AC–25, 631–641 (1980)

    Article  MathSciNet  Google Scholar 

  47. Peaceman, D., Rachford, H.: The numerical solution sof parabolic and elliptic differential equations. J. SIAM 3, 28–41 (1955)

    MathSciNet  MATH  Google Scholar 

  48. Penzl, T.: Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8, 33–48 (1997)

    Article  MathSciNet  Google Scholar 

  49. Penzl, T.: A cycli low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Penzl, T.: Lyapack Users Guide. Tech. Rep. SFB393/00-33, Sonderforschungsbereich 393, Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, FRG. Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html (2000)

  51. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32, 677–687 (1980) (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department (1971))

    Article  MATH  Google Scholar 

  52. Sima, V.: Algorithms for Linear-Quadratic Optimization. Pure and Applied Mathematics, vol. 200. Marcel Dekker, Inc., New York, NY (1996)

    MATH  Google Scholar 

  53. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Smith, R.: Matrix equation XA + BX = C. SIAM J. Appl. Math. 16(1), 198–201 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sun, X., Quintana-Ortí, E.: Spectral division methods for block generalized Schur decompositions. Math. Comput. 73, 1827–1847 (2004)

    Article  MATH  Google Scholar 

  56. Varga, A.: A note on Hammarling’s algorithm for the discrete Lyapunov equation. Syst. Control Lett. 15(3), 273–275 (1990)

    Article  MATH  Google Scholar 

  57. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Benner.

Additional information

Communicated by Juan Manuel Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Faßbender, H. On the numerical solution of large-scale sparse discrete-time Riccati equations. Adv Comput Math 35, 119–147 (2011). https://doi.org/10.1007/s10444-011-9174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9174-7

Keywords

Mathematics Subject Classifications (2010)

Navigation