Skip to main content
Log in

Greville’s method for preconditioning least squares problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a preconditioning algorithm for least squares problems \(\displaystyle{\min_{x\in{{\mathbb{R}}}^n}}\|b-Ax\|_2\), where A can be matrices with any shape or rank. The preconditioner is constructed to be a sparse approximation to the Moore–Penrose inverse of the coefficient matrix A. For this preconditioner, we provide theoretical analysis to show that under our assumption, the least squares problem preconditioned by this preconditioner is equivalent to the original problem, and the GMRES method can determine a solution to the preconditioned problem before breakdown happens. In the end of this paper, we also give some numerical examples showing the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M., Tůma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19, 968–994 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M., Tůma, M.: A robust incomplete factorization preconditioner for poitive definite matrices. Numer. Linear Algebra Appl. 10, 385–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, M., Tůma, M.: A robust preconditioner with low memory requirements for large sparse least squares problems. SIAM J. Sci. Comput. 25, 499–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems, 1st edn. SIAM: Society for Industrial and Applied Mathematics (1996)

  5. Bollhöfer, M., Saad, Y.: On the relations between ILUs and factored approximate inverses. SIAM J. Matrix Anal. Appl. 24, 219–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown, P.N., Walker, H.F.: GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl. 18, 37–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bru, R., Cerdán, J., Marín, J., Mas, J.: Preconditioning sparse nonsymmetric linear systems with the sherman–morrison formula. SIAM J. Sci. Comput. 25, 701–715 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bru, R., MarÍn, J., Tuma, J.M.M.: Balanced incomplete factorization. SIAM J. Sci. Comput. 30, 2302–2318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campbell, S.L., Meyer, C.D. Jr.: Generalized Inverses of Linear Transformations. Pitman, London (1979). Reprinted by Dover, New York (1991)

  10. Chow, E., Saad, Y.: Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput. 19, 995–1023 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, T.A., Hu, Y.: The University of florida sparse matrix collection. ACM Trans. Math. Softw. (to appear). http://www.cise.ufl.edu/research/sparse/matrices

  12. Fill, J.A., Fishkind, D.E.: The Moore–Penrose generalized inverse for sums of matrices. SIAM J. Matrix Anal. Appl. 21, 629–635 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greville, T.N.E.: Some applications of the pseudoinverseof a matrix. SIAM Rev. 2, 15–22 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayami, K., Yin, J.-F., Ito, T.: GMRES Methods for Least Squares Problems. SIAM J. Matrix Anal. Appl. 31, 2400–2430 (2010)

    Article  MathSciNet  Google Scholar 

  15. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

  16. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations. Since Press, Beijing (2003)

    Google Scholar 

  18. Wedin, P.-Å.: Perturbation theory for pseudo-inverses. BIT Numer. Math. 13, 217–232 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yin, J.-F., Hayami, K.: Preconditioned GMRES methods with incomplete givens orthogonalization method for large sparse least-squares problems. J. Comput. Appl. Math. 226, 177–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, N., Wei Y.-M.: On the convergence of general stationary iterative methods for range-hermitian singular linear systems. Numer. Linear Algebra Appl. 17, 139–154 (2010). doi:10.1002/nla.663

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Cui.

Additional information

Communicated by Rafael Bru.

This research was supported by the Grants-in-Aid for Scientific Research(C) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Hayami, K. & Yin, JF. Greville’s method for preconditioning least squares problems. Adv Comput Math 35, 243–269 (2011). https://doi.org/10.1007/s10444-011-9171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9171-x

Keywords

Mathematics Subject Classifications (2010)

Navigation