Skip to main content
Log in

Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical treatment of inverse heat conduction problems. In particular, we combine recent results on the regularization of ill-posed problems by iterated soft shrinkage with adaptive wavelet algorithms for the forward problem. The analysis is applied to an inverse parabolic problem that stems from the industrial process of melting iron ore in a steel furnace. Some numerical experiments that confirm the applicability of our approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonesky, T., Maass, P.: Iterated soft shrinkage with adaptive operator evaluations. J. Inverse Ill-Posed Probl. 17(4), 337–358 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99–R136 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bredies, K., Lorenz, D.A.: Iterated hard shrinkage for minimization problems with sparsity constraints. SIAM J. Sci. Comput. 30(2), 657–683 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bredies, K., Lorenz, D.A., Maass, P.: A generalized conditional gradient method and its connection to an iterative shrinkage method. Comput. Optim. Appl. 42(2), 173–193 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Canuto, C., Tabacco, A., Urban, K.: The wavelet element method, part II: realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal. 8, 123–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, A.: Wavelet methods in numerical analysis. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 417–711. North-Holland, Amsterdam (2000)

    Google Scholar 

  8. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations—convergence rates. Math. Comput. 70(233), 27–75 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II: beyond the elliptic case. Found. Comput. Math. 2(3), 203–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Combettes, P.L., Wajs, V.R.L: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dahlke, S., Dahmen, W., Hochmuth, R., Schneider, R.: Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23(1), 21–48 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dahmen, W., Schneider, R.: Wavelets with complementary boundary conditions—function spaces on the cube. Result. Math. 34(3–4), 255–293 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Dahmen, W., Schneider, R.: Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen, W., Schneider, R.: Wavelets on manifolds I. Construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  17. Eldén, L.: The numerical solution of a non-characteristic Cauchy problem for a parabolic equation, numerical treatment of inverse problems in differential and integral equations, Proc. int. Workshop, Heidelberg 1982. Prog. Sci. Comput. 2, 246–268 (1983)

    Google Scholar 

  18. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  19. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I: Nonstiff problems, 2nd rev. ed., Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  20. E. Hairer and G. Wanner, Solving ordinary differential equations. II: stiff and differential-algebraic problems, Springer Series in Computational Mathematics, vol. 14, 2nd rev. edn. Springer, Berlin, (1996)

    MATH  Google Scholar 

  21. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Google Scholar 

  22. Lang, J.: Adaptive multilevel solution of nonlinear parabolic PDE systems. Theory, algorithm, and applications, Preprint SC 99-20. Konrad-Zuse-Zentrum für Informationstechnik Berlin (1999)

  23. Lang, J.: Adaptive multilevel solution of nonlinear parabolic PDE systems. Theory, algorithm, and applications. Lecture Notes in Computational Science and Engineering, vol. 16. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 2. Dunod, Paris (1968)

    Google Scholar 

  25. Louis, A.K.: Inverse und Schlechtgestellte Probleme. Teubner, Stuttgart (1989)

    Google Scholar 

  26. Lubich, C., Ostermann, A.: Linearly implicit time discretization of nonlinear parabolic equations. IMA J. Numer. Anal. 15(4), 555–583 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and Their Applications, vol. 16. Birkhäuser, Basel (1995)

    Google Scholar 

  28. Primbs, M.: Stabile biorthogonale Spline-Waveletbasen auf dem Intervall. Dissertation, Universität Duisburg-Essen (2006)

  29. Raasch, T.: Adaptive Wavelet and Frame Schemes for Elliptic and Parabolic Equations. Dissertation, Philipps-Universität Marburg (2007)

  30. Ramlau, R., Teschke, G., Zharyi, M.: A compressive Landweber iteration for solving ill-posed inverse problems. Inv. Problems 24(6), 065013 (2008)

    Article  Google Scholar 

  31. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Widder, D.V.: The heat equation, Pure and Applied Mathematics, vol. 67. Academic, New York (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Dahlke.

Additional information

Communicated by guest editors Jin Cheng, Benny Y. C. Hon and Masahiro Yamamoto.

Thomas Bonesky was supported by Deutsche Forschungsgemeinschaft, grant number MA 1657/15-1

Peter Maass was supported by Deutsche Forschungsgemeinschaft, SPP 1180, grant number MA 1657/17-1

Stephan Dahlke and Thorsten Raasch were supported by Deutsche Forschungsgemeinschaft, grants number DA 360/12-1, DA 360/7-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonesky, T., Dahlke, S., Maass, P. et al. Adaptive wavelet methods and sparsity reconstruction for inverse heat conduction problems. Adv Comput Math 33, 385–411 (2010). https://doi.org/10.1007/s10444-010-9147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9147-2

Keywords

Mathematics Subject Classifications (2010)

Navigation