Skip to main content
Log in

Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the exterior Neumann problem of the Laplacian with boundary condition on a prolate spheroid. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet–to–Neumann map. Our approach is particularly suitable for handling of scattered data, e.g. satellite data. We also propose a preconditioning technique based on domain decomposition method to deal with ill-conditioned matrices arising from the approximation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Denver, New York (1965)

    Google Scholar 

  2. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  5. Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.): Geodesy: The Challenge of the 3rd Millennium. Springer, Berlin (2003)

    Google Scholar 

  6. Huang, H.-y., Yu, D.-h.: Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary. J. Comput. Math. 24(2), 193–208 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Matérn, : Spatial Variation of Lecture Notes in Statistics, vol. 36. Springer-Verlag, Berlin (1986)

    Google Scholar 

  8. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, 2 vols. McGraw-Hill Book Co., Inc., New York (1953)

    Google Scholar 

  9. Müller, C.; Spherical Harmonics of Lecture Notes in Mathematics, vol. 17. Springer-Verlag, Berlin (1966)

    Google Scholar 

  10. Narcowich, F.J., Sun, X., Ward, J.D.: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27, 107–124 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer-Verlag, New York (2000)

    Google Scholar 

  13. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schoenberg, I.J.: Positive definite function on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  15. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey (1973)

    MATH  Google Scholar 

  16. Tran, T., Q.T. Le Gia, Sloan, I.H., Stephan, E.P.: Boundary integral equations on the sphere with radial basis functions: error analysis. Appl. Numer. Math. 59, 2857–2871 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Preconditioners for pseudodifferential equations on the sphere with radial basis functions. Numer. Math. 115, 141–163 (2010). doi:10.1007/s00211-009-0269-8

    Article  MATH  MathSciNet  Google Scholar 

  18. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tran.

Additional information

Communicated by Juan Manuel Peña.

Dedicated to R.S. Anderssen on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gia, Q.T., Stephan, E.P. & Tran, T. Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions. Adv Comput Math 34, 83–103 (2011). https://doi.org/10.1007/s10444-010-9145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9145-4

Keywords

Mathematics Subject Classifications (2010)

Navigation