Skip to main content
Log in

Optimal adaptive sampling recovery

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2011

Abstract

We propose an approach to study optimal methods of adaptive sampling recovery of functions by sets of a finite capacity which is measured by their cardinality or pseudo-dimension. Let W ⊂ L q , 0 < q ≤ ∞ , be a class of functions on \({{\mathbb I}}^d:= [0,1]^d\). For B a subset in L q , we define a sampling recovery method with the free choice of sample points and recovering functions from B as follows. For each f ∈ W we choose n sample points. This choice defines n sampled values. Based on these sampled values, we choose a function from B for recovering f. The choice of n sample points and a recovering function from B for each f ∈ W defines a sampling recovery method \(S_n^B\) by functions in B. An efficient sampling recovery method should be adaptive to f. Given a family \({\mathcal B}\) of subsets in L q , we consider optimal methods of adaptive sampling recovery of functions in W by B from \({\mathcal B}\) in terms of the quantity

$$ R_n(W, {\mathcal B})_q := \ \inf_{B \in {\mathcal B}}\, \sup_{f \in W} \, \inf_{S_n^B} \, \|f - S_n^B(f{\kern1pt})\|_q. $$

Denote \(R_n(W, {\mathcal B})_q\) by e n (W) q if \({\mathcal B}\) is the family of all subsets B of L q such that the cardinality of B does not exceed 2n, and by r n (W) q if \({\mathcal B}\) is the family of all subsets B in L q of pseudo-dimension at most n. Let 0 < p,q , θ ≤ ∞ and α satisfy one of the following conditions: (i) α > d/p; (ii) α = d/p, θ ≤ min (1,q), p,q < ∞ . Then for the d-variable Besov class \(U^\alpha_{p,\theta}\) (defined as the unit ball of the Besov space \(B^\alpha_{p,\theta}\)), there is the following asymptotic order

$$ e_n\big(U^\alpha_{p,\theta}\big)_q \ \asymp \ r_n\big(U^\alpha_{p,\theta}\big)_q \ \asymp \ n^{- \alpha / d} . $$

To construct asymptotically optimal adaptive sampling recovery methods for \(e_n(U^\alpha_{p,\theta})_q\) and \(r_n(U^\alpha_{p,\theta})_q\) we use a quasi-interpolant wavelet representation of functions in Besov spaces associated with some equivalent discrete quasi-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besov, O.V., Il’in, V.P., Nikol’ skii, S.M.: Integral Representations of Functions and Embedding Theorems. Winston & Sons, Washington D.C.; Halsted Press [John Wiley & Sons], New York- Toronto, Ont.- London (1978, vol. I), (1979, vol. II)

    Google Scholar 

  2. Birman, M.S., Solomjak, M.Z.: Piecewise-polynomial approximations of the class \(W_p^\alpha\). Math. USSR-Sb. 2(3), 295–317 (1967)

    Article  Google Scholar 

  3. Chui, C.K.: An Introduction to Wavelets. Academic, New York (1992)

    MATH  Google Scholar 

  4. Chui, C.K., Diamond, H.: A natural formulation of quasi-interpolation by multivariate splines. Proc. Am. Math. Soc. 99, 643–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Boor, C., Fix, G.J.: Spline approximation by quasiinterpolants. J. Approx. Theory 8, 19–45 (1973)

    Article  MATH  Google Scholar 

  6. de Bore, C., Höllig, K., Riemenschneider, S.: Box Spline. Springer, Berlin (1993)

    Google Scholar 

  7. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  8. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)

    MATH  Google Scholar 

  9. DeVore, R.A., Popov, V.A.: Interpolation of Besov spaces. Trans. Am. Math. Soc. 305, 397–413 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dung, D: On interpolation recovery for periodic functions. In: Koshi, S. (ed.) Functional Analysis and Related Topics, pp. 224–233. World Scientific, Singapore (1991)

    Google Scholar 

  11. Dung, D: On nonlinear n-widths and n-term approximation. Vietnam J. Math. 26, 165–176 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Dung, D: Continuous algorithms in n-term approximation and non-linear n-widths. J. Approx. Theory 102, 217–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dung, D: Asymptotic orders of optimal non-linear approximations. East J. Approx. 7, 55–76 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Dung, D: Non-linear approximations using sets of finite cardinality or finite pseudo-dimension. J. Complex. 17, 467–492 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dũng, D: Non-linear sampling recovery based on quasi-interpolant wavelet representations. Adv. Comput. Math. 30, 375–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haussler, D.: Decision theoretic generalization of the PAC model for neural net and other learning applications. Inf. Comput. 100(1), 78–150 (1982)

    Article  MathSciNet  Google Scholar 

  17. Haussler, D.: Sphere packing number for subsets of the Boolean n-cube with bounded Vapnik–Chervonekis dimension. J. Comb. Theory, Ser. A 69, 217–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A.N., Tikhomirov, V.M.: ε-entropy and ε-capacity of sets in function space. Uspekhi Mat. Nauk 14, 3–86 (1959) [English trans. Am. Math. Soc. Trans. 17(2), (1961)]

    MATH  Google Scholar 

  19. Kydryatsev, S.N.: The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points. Izv. Math. 62, 19–53 (1998)

    Article  MathSciNet  Google Scholar 

  20. Nikol’skii, S.: Approximation of Functions of Several Variables and Embedding Theorems. Springer, Berlin (1975)

    Google Scholar 

  21. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. In: Lecture Notes in Mathematics, vol. 1349. Springer, Berlin (1988)

    Google Scholar 

  22. Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pollard, D.: Empirical processes: theory and applications. In: NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 2. Inst. Math., Stat. and Ann. Stat. Assoc., Providence (1989)

    Google Scholar 

  24. Ratsaby, J., Maiorov, V.: The degree of approximation of sets in Euclidean space using sets with bounded Vapnik–Chervonekis dimension. Discrete Appl. Math. 86, 81–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ratsaby, J., Maiorov, V.: On the degree of approximation by manifolds of finite pseudo-dimension. Constr. Approx. 15, 291–300 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Temlyakov, V.: Approximation of Periodic Functions. Nova Science, New York (1993)

    MATH  Google Scholar 

  27. Temlyakov, V.: Nonlinear methods of approximation. Fund. Comput. Math. 3, 33–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vapnik, V.N., Ya. Chervonekis, A.: Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theory Probab. Appl. 26, 264–280 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Dũng.

Additional information

Communicated by Qiyu Sun.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10444-011-9198-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dũng, D. Optimal adaptive sampling recovery. Adv Comput Math 34, 1–41 (2011). https://doi.org/10.1007/s10444-009-9140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9140-9

Keywords

Mathematics Subject Classifications (2000)

Navigation