Skip to main content
Log in

Numerical method for the inverse heat transfer problem in composite materials with Stefan-Boltzmann conditions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, one specific kind of heat transfer problem with nonlinear Stefan-Boltzmann conditions are considered in a three dimensional multi-layer domain. Theoretical results for forward and inverse problems are presented. Numerical simulations of specific models from applications are provided to demonstrate the heat transfer process in the composite materials of forward problem. One reconstruction method is proposed to find the corrosion part, and the numerical examples show that the reconstruction algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Banks, H.T., Kojima, F., Winfree, W.P.: Boundary shape identification problems in two-dimensional domains related to thermal testing materials. Q. Appl. Math. 47, 273–293 (1989)

    MATH  Google Scholar 

  3. Banks, H.T., Kojima, F., Winfree, W.P.: Boundary estimation problems arising in thermal tomography. Inverse Probl. 6, 897–922 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bryan, K., Caudill, L.: Stability and resolution in thermal imaging. In: Proc. 1995, ASME Design Engineering Technical Conf., pp. 1023–1032, Boston (1995)

  5. Bryan, K., Caudill, L.: An inverse problem in thermal imaging. SIAM J. Appl. Math. 59, 715–735 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bryan, K., Caudill, L.: Uniqueness for a boundary identification problem in thermal imaging. Electr. J. Differ. Equ. C-1, 23–39 (1997)

    MathSciNet  Google Scholar 

  7. Bryan, K., Caudill, L.: Reconstruction of an unknown boundary portion from Cauchy data in n dimensions. Inverse Probl. 21, 239–255 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapko, R., Kress, R., Yoon, J.R.: An inverse boundary value problem for the heat equation: the Neumann condition. Inverse Probl. 15, 1033–1049 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Canuto, B., Rosset, E., Vessella, S.: Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unkown boundaries. Trans. Am. Math. Soc. 354, 491–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  11. Friedman, A.: Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8, 161–183 (1959)

    MATH  MathSciNet  Google Scholar 

  12. Imanuvilov, O.Y., Yamamoto, M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS Kyoto Univ. 39, 227–274 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Isakov, V.: Inverse Problems for Partial Differential Equations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  14. John, F.: Partial Differential Equations. Springer, New York (1982)

    Google Scholar 

  15. Bell John, B.: The noncharacteristic Cauchy problem for a class of equations with time dependence II: Multidimensional problems. SIAM J. Math. Anal. 12(5), 778–797 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kozlov, V.A., Mazya, V.G.: On iterative procedures for solving ill-posed boundary value problems that preserve differential equations. Leningr. Math. J. 5, 1207–28 (1990)

    MathSciNet  Google Scholar 

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence (1968)

    Google Scholar 

  18. Ockendon, J., Howison, S., Lacey, A., Movchan, A.: Applied Partial Differential Equations. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  19. Thomas, J.W.: Numerical Partial Differencial Equations. Springer, New York (1995)

    Google Scholar 

  20. Vessella, S.: Stability estimates in an inverse problem for a three-dimensional heat equation. SIAM J. Math. Anal. 28, 1354–1370 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, Y.B.: A numerical method for solving the IHCP problem without initial value. In: ICIAM 07, Switzerland (2007)

  22. Wolf, H.: Heat Transfer. Harper & Row, New York (1983)

    Google Scholar 

  23. Yang, G.F., Yamamoto, M., Cheng, J.: Heat transfer in composite materials with Stefan-Boltzmann interface conditions. Math. Methods Appl. Sci. 31, 1297–1314 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Additional information

Communicated by the guest editors Benny Hon, Jin Cheng and Masahiro Yamamoto.

X. Hu was partially supported by Natural Science Foundation of China(10771138), X. Xu was partially supported by Natural Science Foundation of China(10871050) and W. Chen was supported by NSFC Tianyuan Fund for Mathematics(10826105), the National Basic Research Program(2005CB321701) and 111 project grant(B08018).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Xu, X. & Chen, W. Numerical method for the inverse heat transfer problem in composite materials with Stefan-Boltzmann conditions. Adv Comput Math 33, 471–489 (2010). https://doi.org/10.1007/s10444-009-9131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9131-x

Keywords

Mathematics Subject Classifications (2000)

Navigation