Skip to main content
Log in

Linear precision for parametric patches

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We give a precise mathematical formulation for the notions of a parametric patch and linear precision, and establish their elementary properties. We relate linear precision to the geometry of a particular linear projection, giving necessary (and quite restrictive) conditions for a patch to possess linear precision. A main focus is on linear precision for Krasauskas’ toric patches, which we show is equivalent to a certain rational map on \({\mathbb C}{\mathbb P}^d\) being a birational isomorphism. Lastly, we establish the connection between linear precision for toric surface patches and maximum likelihood degree for discrete exponential families in algebraic statistics, and show how iterative proportional fitting may be used to compute toric patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catanese, F., Hoşten, S., Khetan, A., Sturmfels, B.: The maximum likelihood degree. Amer. J. Math. 128(3), 671–697 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95(2), 281–356 (1972)

    Article  MathSciNet  Google Scholar 

  3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM. Springer, New York (1992)

    Google Scholar 

  4. Cox, D.: What is a toric variety? In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 203–223. American Mathematical Society, Providence (2003)

    Google Scholar 

  5. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Stat. 43, 1470–1480 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. DeRose, T., Goldman, R., Hagen, H., Mann, S.: Functional composition algorithms via blossoming. ACM Trans. Graph. 12, 113–135 (1993)

    Article  MATH  Google Scholar 

  7. DeRose, T.D.: Rational Bézier curves and surfaces on projective domains. In: NURBS for Curve and Surface Design (Tempe, AZ, 1990), pp. 35–45. SIAM, Philadelphia (1991)

    Google Scholar 

  8. Farin, G.: Curves and surfaces for computer-aided geometric design. In: Computer Science and Scientific Computing. Academic, San Diego (1997)

    Google Scholar 

  9. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Design 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulton, W.: Introduction to toric varieties. In: Annals of Mathematics Studies. The William H. Roever Lectures in Geometry, vol. 131. Princeton University Press, Princeton (1993)

    Google Scholar 

  11. Karčiauskas, K.: Rational M-patches and tensor-border patches. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 101–128. American Mathematical Society, Providence (2003)

    Google Scholar 

  12. Karčiauskas, K., Krasauskas, R.: Comparison of different multisided patches using algebraic geometry. In: Laurent, P.-J., Sablonniere, P. Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 163–172. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  13. Krasauskas, R.: Toric surface patches. Advances in geometrical algorithms and representations. Adv. Comput. Math. 17(1–2), 89–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krasauskas, R.: Bézier patches on almost toric surfaces. In: Algebraic Geometry and Geometric Modeling. Math. Vis., pp. 135–150. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Lauritzen, S.L.: Graphical models. Oxford Statistical Science Series, vol. 17. Oxford Science Publications, The Clarendon Press Oxford University Press, New York (1996)

    Google Scholar 

  16. Loop, C.T., DeRose, T.D.: A multisided generalization of Bézier surfaces. ACM Trans. Graph. 8(3), 204–234 (1989)

    Article  MATH  Google Scholar 

  17. Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  18. Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334, pp. 225–240. American Mathematical Society, Providence (2003)

    Google Scholar 

  19. Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  20. von Bothmer, H.-C.G., Ranestad, K., Sottile, F.: Linear precision for toric surface patches, 25 pp. ArXiv.org/0806.3230 (submitted)

  21. Wachspress, E.L.: A rational finite element basis. In: Mathematics in Science and Engineering, vol. 114. Academic [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)

    Google Scholar 

  22. Warren, J.: Creating multisided rational Bézier surfaces using base points. ACM Trans. Graph. 11(2), 127–139 (1992)

    Article  MATH  Google Scholar 

  23. Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6(2), 97–108 (1996, 1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sottile.

Additional information

Communicated by Helmut Pottmann.

Work of Sottile supported by NSF CAREER grant DMS-0538734, by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation, and by Peter Gritzmann of the Technische Universität München.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Puente, L.D., Sottile, F. Linear precision for parametric patches. Adv Comput Math 33, 191–214 (2010). https://doi.org/10.1007/s10444-009-9126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9126-7

Keywords

Mathematics Subject Classifications (2000)

Navigation