Skip to main content
Log in

Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).

    MATH  Google Scholar 

  2. M. Ainsworth and J.T. Oden, A Posterior Error Estimation in Finite Element Analysis (Wiley Interscience, New York, 2000).

    Google Scholar 

  3. D.N. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection, SIAM J. Sci. Comput. 22 (2000) 431–448.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Babuska, B.Q. Guo and J.E. Osborn, Regularity and numerical solution of eigenvalue problems with piecewise analytic data, SIAM J. Numer. Anal. 26 (1989) 1534–1560.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Babuska and J.E. Osborn, Finite element-Galerkin approximation for the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (1989) 275–297.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Babuska and J.E. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991) pp. 641–792.

    Google Scholar 

  7. I. Babuska, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach, Int. J. Numer. Meth. Engrg. 37 (1994) 1073–1123.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica 10 (2001) 1–102.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000) 579–608.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.H. Bramble and J.E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973) 525–549.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Carstensen, Quasi-interpolation and a posteriori analysis in finite element methods, RAIRO M2AN 33 (1999) 1187–1202.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Carstensen, S. Bartels and R. Klose, An experimental survey of a posteriori Courant finite element error control for the Poisson equation, Adv. Comput. Math. 15 (2001) 79–106.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Chatelin, Spectral Approximations of Linear Operators (Academic Press, New York, 1983).

    Google Scholar 

  14. C.M. Chen, Optimal points of stresses for tetrahedron linear element, Natur. Sci. J. Xiangtan Univ. 3 (1980) 16–24 (in Chinese).

    Google Scholar 

  15. Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002) 443–462.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  17. P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9 (1975) 77–84.

    MATH  Google Scholar 

  18. G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element, Numer. Methods Partial Differential Equations 10 (1994) 651–666.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems, Adv. Comput. Math. 15 (2001) 107–138.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Krizek, P. Neitaanmaki and R. Stenberg, Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lectures Notes in Pure Appl. Math., Vol. 196 (Marcel Dekker, New York, 1998).

    MATH  Google Scholar 

  21. M.G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal. 38 (2000) 608–625.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1999) 151–167.

    Article  MathSciNet  MATH  Google Scholar 

  23. Q. Lin and A. Zhou, Notes on superconvergence and its related topics, J. Comput. Math. 11 (1993) 211–214.

    MathSciNet  MATH  Google Scholar 

  24. R. Rodriguez, Some remarks on Zienkiewicz–Zhu estimator, Int. J. Numer. Meth. PDE 10 (1994) 625–635.

    MATH  Google Scholar 

  25. R. Verfürth, A Riview of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques (Wiley-Teubner, New York, 1996).

    Google Scholar 

  26. R. Verfürth, A posteriori error estimators for convection-diffusion equations, Numer. Math. 80 (1998) 641–663.

    Article  MATH  MathSciNet  Google Scholar 

  27. M.F. Wheeler and J.R. Whiteman, Superconvergence recovery of gradients on subdomains from piecewise linear finite element approximations, Numer. Methods Partial Differential Equations 3 (1987) 65–82.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000) 881–909.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems, Adv. Comput. Math. 14 (2001) 293–327.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp. 70 (2001) 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001) 4289–4299.

    Article  MathSciNet  MATH  Google Scholar 

  32. Z. Zhang, A posteriori error estimates on irregular grids based on gradient recovery, Adv. Comput. Math. 15 (2001) 363–374.

    Article  MATH  MathSciNet  Google Scholar 

  33. Z. Zhang and H.D. Victory Jr., Mathematical analysis of Zienkiewicz–Zhu's derivative patch recovery technique, Numer. Methods Partial Differential Equations 12 (1996) 507–524.

    Article  MathSciNet  MATH  Google Scholar 

  34. Z. Zhang and J.Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I), Comput. Methods Appl. Mech. Engrg. 123 (1995) 173–187.

    Article  MathSciNet  MATH  Google Scholar 

  35. Q. Zhu and Q. Lin, Superconvergence Theory of Finite Element Methods (Hunan Science Press, Changsha, 1989) (in Chinese).

    Google Scholar 

  36. O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery and a posteriori error estimates, Int. J. Numer. Methods Engrg. 33 (1992) 1331–1364.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Yueshong Xu

Dedicated to Charles A. Micchelli on his 60th birthday

Mathematics subject classifications (2000)

65N15, 65N25, 65N30, 65N50.

Subsidized by the Special Funds for Major State Basic Research Projects, and also supported in part by the Chinese National Natural Science Foundation and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, D., Shen, L. & Zhou, A. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv Comput Math 25, 135–160 (2006). https://doi.org/10.1007/s10444-004-7617-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7617-0

Keywords

Navigation