Skip to main content
Log in

Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch – Numerical Study

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Baker, A.: Advances in the bonded composite repair of metallic aircraft structure. 2 (1991)

  2. Shinde, P.S., Tripathi, V.K., Prashant Kumar, Sarkar, P.K., Singh, K.K.: Review paper on analysis of composite patches as a crack arrestor. J. Eng. Appl. Sci. 6, 222–226 (2011)

    Article  Google Scholar 

  3. Megueni, A., Bashir Bouiadjra, B., Belhouari, M.: Disbond effect on the stress intensity factor for repairing cracks with bonded composite patch. Comput. Mater. Sci. 29, 407–413 (2004)

    Article  Google Scholar 

  4. Baker, A.: Bonded composite repair of fatigue-cracked primary aircraft structure. Compos. Struct. 47, 431–443 (1999)

    Article  Google Scholar 

  5. Doung, C.A.: Composite repair: theory and design. Elsevier (2007)

  6. Kim, H.S., Cho, M.H., Lee, J.H., Deheeger, A., Diac, M.G., Mathias, J.D.: Three dimentional stress analysis of a composite patch using stress functions. Int. J. Mech. Sci. 52, 1646–1659 (2010)

    Article  Google Scholar 

  7. Gu, L., Kasavajhala, A.R.M., Zhao, S.: Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs. Compos. Part B 42, 505–510 (2011)

    Article  Google Scholar 

  8. Pantelides, C.P., Nadauld, J., Cercone, L.: Repair of cracked aluminum overhead sign structures with glass fiber reinforced polymer composites. J. Compo. Constr. ASCE 7(2), 118–126 (2003)

    Article  Google Scholar 

  9. Soutis, C., Duan, D.-M., Goutas, P.: Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Compos. Struct. 45, 289–301 (1999)

    Article  Google Scholar 

  10. Okafor, A.C., Singh, N., Enemuoh, U.E., Rao, S.V.: Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels. Compos. Struct. 71, 258–270 (2005)

    Article  Google Scholar 

  11. Vaziri, A., Nayeb-Hashemi, H.: Dynamic response of a repaired composite beam with an adhesively bonded patch under a harmonic peeling load. Int. J. Adhes. Adhes. 26, 314–324 (2007)

    Article  Google Scholar 

  12. Hosseini-Toudeshki, H., Ghaffari, M.A., Mohammadi, B.: Finite element fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches. Compos. Struct. 94, 1771–1780 (2012)

    Article  Google Scholar 

  13. Azari, S., Papini, M., Spelt, J.K.: Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints-Part II: analysis and finite element modeling. Eng. Fract. Mech. 78, 138–152 (2011)

    Article  Google Scholar 

  14. Nadauld, J.D., Pantelides, C.P.: Rehabilitation of cracked aluminum connections with GFRP composites for fatigue stresses. J. Compos. Constr. ASCE 11(3), 328–335 (2007)

    Article  Google Scholar 

  15. Khalili, S.M.R., Ghadjar, R., Sadeghinia, M., Mittal, R.K.: An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Compos. Struct. 89, 270–274 (2009)

    Article  Google Scholar 

  16. Wang, Q., Duan, W.H., Quek, S.T.: Repair of notched beam under dynamic load using piezoelectric patch. Int. J. Mech. Sci. 46, 1517–1533 (2004)

    Article  Google Scholar 

  17. Bachir, B.B., Fekirini, H., Serier, B., Benguediab, M.: Numerical analyis of the benefical effect of the double symmetric ptch repair compared to single one in aircraft structures. Comput. Mater. Sci. 38, 824–829 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. R. Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili, S.M.R., Shariyat, M. & Mokhtari, M. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch – Numerical Study. Appl Compos Mater 21, 441–455 (2014). https://doi.org/10.1007/s10443-014-9390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9390-7

Keywords

Navigation