Skip to main content
Log in

A Contribution to Time-Dependent Damage Modeling of Composite Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The paper presents a new damage model for predicting stiffness loss due to creep loading and cyclic fatigue. The model, developed within a continuum damage mechanics framework, is based on the idea of a time-dependent damage spectrum, some elements of which occur rapidly and others slowly. The use of this spectrum allows a single damage kinematic to model creep and fatigue damage and to take into account the effect of stress amplitude, R ratio, and frequency. The evolution equations are based on similar equation than the one describing the viscoelasticity model and are relatively easy to implement. The new model is compared to the experimental results on carbon fiber/epoxy tubes. Quasi-static, creep and fatigue tests are performed on filament-wound tubular specimens to characterize the elastic, viscoelastic and plastic behavior of the composite material. Varying amounts of damage are observed and discussed depending on stress level and R ratio. The experimental work aims to develop and validate the damage model for predicting stiffness loss due to creep loading and cyclic fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karayaka, M., et al.: Composite production riser dynamics and its effects on tensioners, stress joints, and size of deep water tension leg platforms. Offshore Technology Conference, Houston, Texas (1998)

    Google Scholar 

  2. Odru, P., Poirette, Y., Saint-Marcoux, J.F., Stassen, Y.: Composite riser and export line systems for deep offshore applications. 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico (2003)

    Google Scholar 

  3. Martin, R.: Composite materials: an enabling material for offshore piping systems. Offshore Technology Conference, Houston, Texas (2013)

    Google Scholar 

  4. Salama MM et al.: Composite Risers Are Ready for Field Applications – Status of Technology, Field Demonstration, and Life Cycle Economics. 13th International Deep Offshore Technical Conference (DOT 2001), October 17–19 2001, Rio de Janeiro, Brazil

  5. Perreux, D., Joseph, E.: Effect of frequency on the fatigue performance of filament-wound pipes under biaxial loading: Experimental results and damage model. Compos. Sci. Technol. 57(3), 353–364 (1997)

    Article  Google Scholar 

  6. Kaynak, C., Mat, O.: Uniaxial fatigue behavior of filament-wound glass-fiber/epoxy composite tubes. Compos. Sci. Technol. 61(13), 1833–1840 (2001)

    Article  Google Scholar 

  7. Degrieck, J., Van Paepegem, W.: Fatigue damage modeling of fibre-reinforced composite materials: Review. Appl. Mech. Rev. 54(4), 279–300 (2001)

    Article  Google Scholar 

  8. Moore, R.H., Dillard, R.A.: Time dependent matrix cracking in cross-ply laminates. Compos. Sci. Technol. 39, 1–12 (1990)

    Article  Google Scholar 

  9. Raghavan, J., Meshii, M.: Time dependent damage in carbon fiber reinforced polymer composites. Compos. Part A 27, 1223–1227 (1996)

    Article  Google Scholar 

  10. Guedes R.M.: Time-dependent failure criteria for polymer matrix composites: a review. In Proceedings of International Conference for Composite Materials 17, Edinburgh, UK, 27–31 July (2009)

  11. Miranda Guedes R.: Creep and fatigue in polymer matrix composites, Woodhead Publishing (2010)

  12. Nikishkov Y., Makeev A., Seon G.: Progressive fatigue damage simulation method for composites. International Journal of Fatigue, In Press, Corrected Proof, Available online 21 November (2012)

  13. Asadi, A., Raghavan, J.: Influence of time-dependent damage on creep of multidirectional polymer composite laminates. Compos. Part B Eng. 42(3), 489–498 (2011)

    Article  Google Scholar 

  14. Ladevèze, P.: About a damage mechanics approach. In: Baptiste, D. (ed.) Mechanics and mechanisms of damage in composites and multi-materials, pp. 119–141. Mechanical Engineering Publications Limited, London (1991)

    Google Scholar 

  15. Ladevèze, P., Lubineau, G.: On a damage mesomodel for laminates: micro–meso relationships, possibilities and limits. Compos. Sci. Technol. 61(15), 2149–2158 (2001)

    Article  Google Scholar 

  16. Vaughan, T.J., McCarthy, C.T.: Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71(3), 388–396 (2011)

    Article  Google Scholar 

  17. Joseph E. and Perreux D.: A model for predicting the fatigue damage of filament wound pipes. In: Proceedings of DURACOSYS 95, pp. 91–100. Brussels, Belgium, 16–21 July (1995)

  18. Thiebaud, F., Perreux, D.: Overall mechanical behaviour modelling of composite laminate. Eur. J. Mecha. A Solids 15(3), 423–445 (1996)

    Google Scholar 

  19. Perreux, D., Oytana, C.: Continuum damage mechanics for microcracked composites. J. Compos. Eng. 3, 115–122 (1993)

    Article  Google Scholar 

  20. Petipas C., Maire J.F. and Sigety P.: Modélisation viscoélastique du comportement en fluage d’un composite à fibres de carbone et matrice bismaléimide. In: Proceedings of French National Colloquium on Composite Materials (JNC 11), pp. 845–853. Arcachon, France, 18–20 November (1998)

  21. Richard, F., Perreux, D.: The safety-factor calibration of laminates for long-term applications: behavior model and reliability method. Compos. Sci. Technol. 61, 2087–2094 (2001)

    Article  Google Scholar 

  22. Perreux, D., Lazuardi, D.: The effect of residual stress on the non-linear behaviour of composite laminates Part II. Layer, laminate non-linear models and the effect of residual stress on the model parameters. Compos. Sci. Technol. 61, 177–190 (2001)

    Article  Google Scholar 

  23. Treasurer P.: Durability of Tubular Composite Structures: Fatigue Time Dependent Damage Modelling. PhD Thesis, IFPEN Report (2010)

  24. Dyer, K.P., Isaac, D.H.: Fatigue behaviour of continuous glass fibre reinforced composites. Compos. Part B 29B, 725–733 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Poirette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treasurer, P., Poirette, Y., Perreux, D. et al. A Contribution to Time-Dependent Damage Modeling of Composite Structures. Appl Compos Mater 21, 677–688 (2014). https://doi.org/10.1007/s10443-013-9364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9364-1

Keywords

Navigation