Skip to main content
Log in

Counting Central Configurations at the Bifurcation Points

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Enumeration problems for the central configurations of the Newtonian \(n\) body problem are hard for \(n>3\) in \(\mathbb{R}^{2}\) and \(n>4\) in \(\mathbb{R}^{3}\). These are problems in finding the numbers of classes of central configurations for all the masses in a parameter space of positive dimensions. Many results are obtained generically. That is, rigorous proofs of the counting problems only exists for parameters not at the bifurcation points. For the bifurcation points, only numerical evidences are provided due to the complexity of the problems.

In this paper, we propose an algorithm that rigorously proves results on counting central configurations for all masses in one dimensional parameter spaces. Especially, we provide an approach to find all bifurcation points and count real roots at those points, known only implicitly. A spatial restricted \((4+1)\)-body problem and a planar \((1+3)\)-body problem are successfully applied by our method. All results except for the equal masses for the restricted \((4+1)\)-body problem are new and the results for the planar \((1+3)\)-body problem are new at the bifurcation points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arenstorf, R.F.: Central configurations of four bodies with one inferior mass. Celest. Mech. 28, 9–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albouy, A., Kaloshin, V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176, 535–588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barros, J., Leandro, E.: The set of degenerate central configurations in the planar restricted four body problem. SIAM J. Math. Anal. 43, 634–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barros, J., Leandro, E.: Bifurcations and enumeration of classes of relative equilibria in the planar restricted four body problem. SIAM J. Math. Anal. 46(2), 1185–1203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corbera, M., Cors, J., Llibre, J.: On the central configurations of the \(1+3\) body problem. Celest. Mech. Dyn. Astron. 109, 27–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corbera, M., Cors, J., Llibre, J., Moeckel, R.: Bifurcation of relative equilibria of the \(1+3\) body problem. SIAM J. Math. Anal. 47(2), 1377–1404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, A.M., Cuypers, H., Sterk, H. (eds.): Some Tapas of Computer Algebra. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Collins, G.E., Krandick, W.: An efficient algorithm for infallible polynomial complex root isolation. In: Wang, P.S. (ed.) Proceedings of ISSAC’92, pp. 189–194 (1992)

    Google Scholar 

  9. Casasayas, J., LIibre, J., Nunes, A.: Central configurations of the planar \(1+n\) body problem. Celest. Mech. Dyn. Astron. 60, 273–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cors, J.M., LIibre, J., Olle, M.: Central configurations of the planar coorbital satellite problem. Celest. Mech. Dyn. Astron. 89, 319–342 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, an Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergrad. Texts Math. Springer, New York (1992)

    MATH  Google Scholar 

  12. Gantmacher, F.R.: Theory of Matrices(I). Chelsea, New York (1960)

    MATH  Google Scholar 

  13. Gonzales-Vega, L., Traverso, C., Zanoni, A.: Hilbert stratification and parametric Gröbner bases. In: CASC 2005. LNCS, vol. 3781, pp. 220–235 (2005)

    Google Scholar 

  14. Hagihara, Y.: Celestial Mechanics, vol. 1. MIT Press, Cambridge (1970)

    MATH  Google Scholar 

  15. Hampton, M., Jensen, A.: Finiteness of spatial central configurations in the 5 body problem. Celest. Mech. Dyn. Astron. 109, 321–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leandro, E.: On the Dziobek configurations of the restricted (\(N+1\))-body problem with equal masses. Discrete Contin. Dyn. Syst., Ser. S 4(4), 589–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moulton, F.R.: The straight line solutions of the problem of \(n\) bodies. Ann. Math. 12, 1–17 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michelucci, D., Foufou, S.: Using Cayley–Menger determinants for geometry constraint solving. In: ACM Symposium on Solid Modeling and Application, pp. 285–290 (2004)

    Google Scholar 

  20. Pedersen, P.: Librationspunkte im restringierten Vierörperproblem. Danske Vid. Selsk. Math.-Fys. 21, 1–80 (1944)

    MATH  Google Scholar 

  21. Santos, A.A.: Dziobek’s configurations in restricted problems and bifurcations. Celest. Mech. Dyn. Astron. 90, 213–238 (2004)

    Article  MATH  Google Scholar 

  22. Simó, C.: Relative equilibrium solutions in the four body problem. Celest. Mech. Dyn. Astron. 18, 165–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saari, D.: On the role and properties of \(n\)-body central configurations. Celest. Mech. 21, 9–20 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsai, Y.: Real root counting for parametric polynomial systems and Applications. Ph.D. Thesis

  26. Tsai, Y.: Counting central configurations at the bifurcation points.nb. Mathematica notebook. Available from http://web.nchu.edu.tw/~yltsai/

Download references

Acknowledgements

The author would like to thank Professor Richard Moeckel for his Mathematica codes for some of the computations in this paper. This research was partly supported by the Ministry of Science and Technology of the Republic of China under the grant MOST 104-2115-M-005-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Lun Tsai.

Appendix

Appendix

$$\begin{aligned} g^{4} =& 14348907 k^{8} (-1 + 2 k)^{8} (-209131272894456944593144423783511499+ 12110628365621863141752595158626784528 k\\ &{}- 321833043687522840731801104763386910592 k^{2}+ 5282816045452154761864610890773283600512 k^{3}\\ &{}- 62321870899214934024101752875083881832064 k^{4}+ 599525084805566810091138278319212884859904 k^{5}\\ &{}- 5089568434708560545391461340982194650038272 k^{6}+ 36166744134658030710388619684062815617212416 k^{7}\\ &{}- 173682271713691426508982988802998229113860096 k^{8}+ 194571006705401622461750893770741265329291264 k^{9}\\ &{}+ 4361256499184399605996203588453710463202492416 k^{10}- 36421637749003467158373200672552890309715951616 k^{11}\\ &{}+ 124882780920217517416458592876205800627856474112 k^{12}+ 29686057623670734992158867195772201771747770368 k^{13}\\ &{}- 2466456064067386957557900544447489158933808939008 k^{14}+ 13381022051799846243452346385896117243126868869120 k^{15}\\ &{}- 41374670022892701550349904115844068890901605253120 k^{16}+ 80753323917919406241244407109506118710185454206976 k^{17}\\ &{}- 83736644329390615981846331514643026939784938389504 k^{18}- 30007914497106340313051523250403681924098155347968 k^{19}\\ &{}+ 272731526235208997199716801978606751657411295051776 k^{20}- 474893308685999304513566831791186612587185504780288 k^{21}\\ &{}+ 377936791496790041531539287484101936517848003248128 k^{22}+ 45725571810491945129380762018308178031630427881472 k^{23}\\ &{}- 461651770005669715931369926596333817388529501601792 k^{24}+ 531482425572495898790826588549220379127061961244672 k^{25}\\ &{}- 303978834654331499546743054391553714615507518226432 k^{26}+ 69287711932141399434591769259304063291764502429696 k^{27}\\ &{}+ 27556767991099841456412079571314810360028677013504 k^{28}- 36931239344498259899134718751866345172519622803456 k^{29}\\ &{}+ 25570057182062646531889634545006726676623579414528 k^{30}- 13171219513113041503585322296508115743622003949568 k^{31}\\ &{}+ 4161404052216203236353315247932243607000751013888 k^{32}- 187806263065237241933283988669334605412687675392 k^{33}\\ &{}- 519880180214264903494000068173159853087738822656 k^{34}+ 269442833171764114875905064559700228009694855168 k^{35}\\ &{}- 68433198701898044709157961856663742108338749440 k^{36}+ 6459589270291605471908946749983035900473376768 k^{37}\\ &{}+ 2491259031666340925404431775738992043235475456 k^{38}- 975758706756982810145782951238978471618150400 k^{39}\\ &{}+ 97575870675698281014578295123897847161815040 k^{40}).\\ g^{5} =&1000301832637713093336811104632832 k^{14} (-6193005856 + 34523341224 k- 88164313884 k^{2} + 179027640450 k^{3} - 296194349727 k^{4} + 292634913915 k^{5}\\ &{}- 135093148569 k^{6} + 22052144295 k^{7})^{2} (7290000000000 - 437400000000000 k+ 10671484725000000 k^{2} - 91123902855000000 k^{3} + 643286524024321875 k^{4}\\ &{}- 22708959618399581250 k^{5} + 500801355667529080875 k^{6} - 6197850032153476113900 k^{7} + 54882543612603736731564 k^{8}- 421146331287143356032660 k^{9}\\ &{}+ 2954546557428780047159658 k^{10} - 17648630788414956041955708 k^{11} + 83771969920609859108071258 k^{12}- 306975451272810787413804180 k^{13}\\ &{}+ 857391208251519414055109752 k^{14} - 1794120238816087989509616300 k^{15} + 2726191394983375066395449239 k^{16} - 2838574971479705566887774018 k^{17}\\ &{}+ 1728344797213312641067462323 k^{18} - 37350374248580151836867904 k^{19} - 1300031429522116294856107152 k^{20} + 1983441863951450533463609376 k^{21}\\ &{}- 2053166141818806972470118720 k^{22} + 1531280866164945026551289856 k^{23} - 694191759631599704931041472 k^{24}+ 1583068252243304132527104 k^{25}\\ &{}+ 286525215697323461069387520 k^{26} - 258835251578200089068123136 k^{27} + 133514108743669727266861056 k^{28} - 40315836246102348631824384 k^{29}\\ &{}+ 5280932874361714728127488 k^{30}).\\ g^{6} =&(-10 + k)^{2} (-312 + 1896 k + 530 k^{2} + 588 k^{3} + 101 k^{4} + 31 k^{5} + k^{6})^{2} (2963399638413312 + 23142740033323008 k + 72951703384555008 k^{2}\\ &{}+ 111198530932125696 k^{3} + 57853164006793584 k^{4} - 74362983171264576 k^{5} - 150432849004786240 k^{6} - 90543746418355752 k^{7} + 13327925036628816 k^{8}\\ &{}+ 44887125905050176 k^{9} + 20891973423983679 k^{10})^{3} (-8438743501575408 + 2678966190976320 k + 345472406710968960 k^{2} + 400296455761238280 k^{3}\\ &{}- 11384652544065195120 k^{4} + 12123699015371647968 k^{5} + 119990316536124348321 k^{6} - 159500845521348320736 k^{7} - 1771852062223329593868 k^{8}\\ &{}+ 9249906747903520991616 k^{9} - 25608023464518181047260 k^{10} + 53192685061230729315840 k^{11} - 87060482984162666161152 k^{12}\\ &{}+ 105029467560226902200832 k^{13} - 90330266881601149980672 k^{14} + 54441252684647804362752 k^{15} - 3597828247551090484224 k^{16}\\ &{}- 50207178662075239133184 k^{17} + 45101390498475214934016 k^{18} + 2898856085837444554752 k^{19} - 11491835434562035187712 k^{20}\\ &{}+ 544400220773632720896 k^{22}) (130826199714027687546065564006018101914573913451569359994533161147196600096890290176\\ &{}+ 6379334690817350097484339882960120779072556541638429744495331286415681833295983673344 k\\ &{}+ 143343436290907434190236021879697713112605548862658775303662260908808778086044764471296 k^{2}\\ &{}+ 1925971468600100640078529726392319981686684029582601342104648453967347669944533862318080 k^{3}\\ &{}+ 16429902038782606583966068303176355643061275650052560033878736641831321770977372649505024 k^{4}\\ &{}+ 79818441780782785298622655114118418614152880689308033436557543804575226170277636842717184 k^{5}\\ &{}+ 11861556659920223788540462451206599915743797275844984659267609794402598580893349608768000 k^{6}\\ &{}- 3326425877717349404890766114854188474912014861300004392474168258124949363371872228243945472 k^{7}\\ &{}- 29810408973203405650504903643812092463921474518251682329413306945917906711732246082125358848 k^{8}\\ &{}- 137766675196343189652470538532985423408703481491672330048478847419017900194019901136583450624 k^{9}\\ &{}- 221132170868715922837450062532672166778701316102052890154980626384120653744791062068949029056 k^{10}\\ &{}+ 1807663668476843379787247448654704281223072364906507467853970901734633584037194483383449411584 k^{11}\\ &{}+ 17210516363703688109410764981931187566113319520547741849634865036725432133642018859904797599616 k^{12}\\ &{}+ 76453250500788007077602612456964514915210305030229523300641479285800042789091039931251226507392 k^{13}\\ &{}+ 171826074945197597439477944345955886878696447327774201742732925591358550636049577372250627146816 k^{14}\\ &{}- 187799799219729462130480345019905757098329529988354011206691518378527904690248560149070734150912 k^{15}\\ &{}- 3506935540755201516061628765671398979334892397630228474731645666802791305163082628957931630620928 k^{16}\\ &{}- 16685981007862080222261942014908814524889083182754418387932967366610605254027552236687716057516160 k^{17}\\ &{}- 46741539140815536453664256883776051478980280491609165478123328651577225431704752392429668464103648 k^{18}\\ &{}- 61791521559184706472527367904713974509060889517035425682666785763021907402125508683791314157012224 k^{19}\\ &{}+ 131249601858955428013626830456690535318883698534523207989005957351159703116814171185594919788454000 k^{20}\\ &{}+ 1068544560710046898111443181163038729656721629680505566453439569887009100129604384121851588603022464 k^{21}\\ &{}+ 3463079992414460988274354308988673334223003901096743582305383724385402690601787822817732797861546441 k^{22}\\ &{}+ 6419822113434879250282302315521108299434239825846597981042573749810170217477256298287696571335421600 k^{23}\\ &{}+ 1979519903939803893438172353625722285226670911874921540140986628363321908317603740148445491021677176 k^{24}\\ &{}- 34683376930038393458953245095561876552348902973219361538733201261128603393761859204472584541895138972 k^{25}\\ &{}- 154087104607807508146279666033043838233560701359289712190153578642306380570193723790622660606190028364 k^{26}\\ &{}- 427455243182638450672140169260207191723922410340555485500167115355466526596877319824129201909624857024 k^{27}\\ &{}- 923089682323392891666047074140958455517108052382898305706194205345481921257734025646023101855683462418 k^{28}\\ &{}- 1708972993943732388803634206263203439555789464315773328360019952062724292775643178118739178779929839696 k^{29}\\ &{}- 3011990205852923110945308260891356867708147389086770527692074955503309130927194170373066970226410019726 k^{30}\\ &{}- 5678934487344602279227963368062517721546353608634445744656987743819749786276387550890061336279696102364 k^{31}\\ &{}- 11815279314924989958518720012276790070346076895949444644113895058705170425027501349046603253701891281152 k^{32}\\ &{}- 24801774380754131156491823684222603099127511055198039944478179594317357994308496365195196441449729521496 k^{33}\\ &{}- 47168261827276459298454261797663378900778492070840713684305556059277688132995070307373076527936197929299 k^{34}\\ &{}- 75093411932431688760387739140737443441255559997177462428517787642799225677995702550689867686646689044176 k^{35}\\ &{}- 90735490170765155437366044777137870223414013922975351374908498666176348567238357739348175822928477777300 k^{36}\\ &{}- 57849476055832003614944342766728571184345788180763119952952913029256133284610070847957480209575804762128 k^{37}\\ &{}+ 70880080173819969063467196699223343380987603661719313659638637345083086195282278990831134960221594135595 k^{38}\\ &{}+ 329406620455910920455686252427003454970930641454827294708462044642744244351737699877097388732685595848392 k^{39}\\ &{}+ 702602033267609853865934083513335793819190112296049924813989635004024334123484721444302942726842203139792 k^{40}\\ &{}+ 1099355110516326873784820219647587814489461157592058650684255106276781585915891508539939751252834522838396 k^{41}\\ &{}+ 1360267765310901248406493563365479530444515456076185510570653832713615208384957283039844063779330806071530 k^{42}\\ &{}+ 1312679038581120838812399205562631748751311121093903681353731167035087853084980808751544651121280365610480 k^{43}\\ &{}+ 856425206002602118369511459413241543702348442377962504559503612316575451706497918417802644392316745079506 k^{44}\\ &{}+ 36202229725222209897870509764907554989756506518674102892227680007033063422832296752613334065047564720416 k^{45}\\ &{}- 946839103974113378797000648703545303571428530555410279939368539264263076489821725642429989436746737392464 k^{46}\\ &{}- 1802233567414672516966550805472280866222380869926731160045983498527266251669107588719838398980164400794052 k^{47}\\ &{}- 2267969979723143318867523216896052151550388575255975020412037502920019855688847925523445213287333679308040 k^{48}\\ &{}- 2218801712794043701393753065026915691317666044553362193996205842708962228706503765542477961145186583426768 k^{49}\\ &{}- 1709661473064309759056994753023021253296580645808905363468689485278463305033741264062312174280290326456929 k^{50}\\ &{}- 936781256404498758173082528974828953598912621525992091190348088876666258693337608190909410469912078373792 k^{51}\\ &{}- 144425744928496866602683403003905622920055257849593784349483201075750640540286142719812979895725867575656 k^{52}\\ &{}+ 470972067971017621267656262451844221395791326419647036421835335501596126938170576271471792576057499620064 k^{53}\\ &{}+ 816029153634114312705424072613077541028051456221260430734985492367887742789301731465998419154074331962671 k^{54}\\ &{}+ 901398241862998730216566206136105470383762126179825653452080672348867333156706062519647113136518089668240 k^{55}\\ &{}+ 803997923185930692496647021544550619030769736154446720922427781266229831154361437656218405394908377769368 k^{56}\\ &{}+ 618699993454747560183153212395875363653989069105303181572673005133501803388817511305201261981862448965788 k^{57}\\ &{}+ 422452078464695555474554030742372799830333707469014341405339017232288497504444011172744561925087742514496 k^{58}\\ &{}+ 259611314168884006788277847769604371584536041946756686790189045071201455112557236836100998698597973483168 k^{59}\\ &{}+ 144711522136417430545461503606109880498634371338735959612384211753269240781296504523147401998388531985906 k^{60}\\ &{}+ 73479169050130646151453725878188996814286295581744971021938636684228002715931683620190937389017126091120 k^{61}\\ &{}+ 34055509281654745349183438734975572063260564581942378515054237850639368481616365580386334352784313467002 k^{62}\\ &{}+ 14413329056702784347876012650085728773229504993902823506324224926423511343914366808885183512047100312028 k^{63}\\ &{}+ 5565928139449973907459771580680131070217469889200147395135209213229722441637881976739774535781989837936 k^{64}\\ &{}+ 1957325191797168552171033574826019996992995134519519803260725250424720928804594113485493671220288854824 k^{65}\\ &{}+ 624916837615036060334268602937054130436711615253594348218854326481988693802745891893972282030387564027 k^{66}\\ &{}+ 180383969458627961202989383265868774365499162274931933515735551185358671783002693213520904214192018800 k^{67}\\ &{}+ 46817949116451900797748670248298961704611767473584313537835991741717254695275449730282109053029547852 k^{68}\\ &{}+ 10849875318994151603032797323948467554024140287730197036749234364809086774742896450246169431629221552 k^{69}\\ &{}+ 2225221508950651459592654266022542551525792485857827235132999395189877944485800821244395576606621885 k^{70}\\ &{}+ 399333836316577577906961899511206835549858229188976348726535631026857736989583546786091985945900680 k^{71}\\ &{}+ 61796521467123963355105984078485972861372383293338624242889260861139163023969503929397554019685408 k^{72}\\ &{}+ 8089022711223645600529464708861676042153179708190779666179924655790669763003713977485678758757892 k^{73}\\ &{}+ 872542331281041329790157302889074619752457775630885310148043768798640392163509372031654114995970 k^{74}\\ &{}+ 74745328394994581611779939844485006064910130668357818169305194856380178617038980552481143084848 k^{75}\\ &{}+ 4811350227207088047657661135034745075604151309575889046968705504827542728514813286504294378254 k^{76}\\ &{}+ 212942275657411544202473275950082965976660220469767880277522625858544001198392584154640557888 k^{77}\\ &{}+ 5581022912242884171446108084587147924257178666593492361474466389316172301566873799443094596 k^{78}\\ &{}+ 76335623138985695233552036225597533902650187236945887492566357639490967096736389365202500 k^{79}\\ &{}+ 1550152988085496822992578379085646470777530030706561536010310454161996471356618527375000 k^{80}\\ &{}+ 6912431250445102740059121031244811763320553535207182169998113383153814101007000000000 k^{81}\\ &{}+ 119088766094523880809538001718084393280753588166996644685873362375280914043759765625 k^{82})^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YL. Counting Central Configurations at the Bifurcation Points. Acta Appl Math 144, 99–120 (2016). https://doi.org/10.1007/s10440-016-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0042-9

Keywords

Mathematics Subject Classification (2010)

Navigation