Skip to main content
Log in

Stability of Fronts in Inhomogeneous Wave Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper presents an introduction to the existence and stability of stationary fronts in wave equations with finite length spatial inhomogeneities. The main focus will be on wave equations with one or two inhomogeneities. It will be shown that the fronts come in families. The front solutions provide a parameterisation of the length of the inhomogeneities in terms of the local energy of the potential in the inhomogeneity. The stability of the fronts is determined by analysing (constrained) critical points of those length functions. Amongst others, it will shown that inhomogeneities can stabilise non-monotonic fronts. Furthermore it is demonstrated that bi-stability can occur in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akoh, H., Sakai, S., Yagi, A., Hayakawa, H.: Real time fluxon dynamics in Josephson transmission line. IEEE Trans. Magn. 21, 737–740 (1985)

    Article  Google Scholar 

  2. Barone, A., Esposito, F., Magee, C.J., Scott, A.C.: Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1, 227 (1971)

    Article  Google Scholar 

  3. Bishop, A.R., Schneider, T. (eds.): Solitons and Condensed Matter Physics: Proceedings of a Symposium Held June 27–29. Springer, Berlin (1978)

    Google Scholar 

  4. Davydov, A.S.: Solitons in Molecular Systems. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  5. Derks, G., Gaeta, G.: A minimal model of DNA dynamics in interaction with RNA-polymerase. Physica D 240, 1805–1817 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Derks, G., Doelman, A., Knight, C.J.K., Susanto, H.: Pinned fluxons in a Josephson junction with a finite-length inhomogeneity. Eur. J. Appl. Math. 23(2), 201–244 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  8. Gibbon, J.D., James, I.N., Moroz, I.M.: The sine-Gordon equation as a model for a rapidly rotating baroclinic fluid. Phys. Scr. 20, 402–408 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodman, R.H., Haberman, R.: Interaction of sine-Gordon kinks with defects: the two bounce resonance. Physica D 195, 303–323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goodman, R.H., Haberman, R.: Chaotic scattering and the n-bounce resonance in solitary-wave interactions. Phys. Rev. Lett. 98, 104103 (2007)

    Article  Google Scholar 

  11. Goodman, R.H., Weinstein, M.I.: Stability and instability of nonlinear defect states in the coupled mode equations – analytical and numerical study. Physica D 237, 2731–2760 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hale, J.K.: Ordinary Differential Equations. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  14. Jackson, R.K., Marangell, R., Susanto, H.: An instability criterion for standing waves on nonzero backgrounds. J. Nonlinear Sci. (2014). doi:10.1007/s00332-01409215-8

    MathSciNet  Google Scholar 

  15. Jones, C.K.R.T.: Instability of standing waves for non-linear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8, 119–138 (1988)

    Article  MATH  Google Scholar 

  16. Jones, C.K.R.T., Moloney, J.V.: Instability of standing waves in nonlinear optical waveguides. Phys. Lett. A 117, 175–180 (1986)

    Article  Google Scholar 

  17. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989). Rev. Mod. Phys. 63, 211 (1991)

    Article  Google Scholar 

  18. Kivshar, Y.S., Kosevich, A.M., Chubykalo, O.A.: Finite-size effects in fluxon scattering by an inhomogeneity. Phys. Lett. A 129, 449–452 (1988)

    Article  Google Scholar 

  19. Kivshar, Y.S., Fei, Z., Vázquez, L.: Resonant soliton-impurity interactions. Phys. Rev. Lett. 67, 1177 (1991)

    Article  Google Scholar 

  20. Knight, C.J.K., Derks, G.: A stability criterion for the non-linear wave equation with spatial inhomogeneity. Preprint (2014). http://arxiv.org/abs/1411.5277

  21. Knight, C.J.K., Derks, G., Doelman, A., Susanto, H.: Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity. J. Differ. Equ. 254, 408–468 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Marangell, R., Jones, C.K.R.T., Susanto, H.: Localized standing waves in inhomogeneous Schrodinger equations. Nonlinearity 23, 2059 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Marangell, R., Susanto, H., Jones, C.K.R.T.: Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations. J. Differ. Equ. 253, 1191–1205 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. McLaughlin, D.W., Scott, A.C.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18, 1652–1679 (1978)

    Article  Google Scholar 

  26. Piette, B., Zakrzewski, W.J.: Dynamical properties of a soliton in a potential well. J. Phys. A 40, 329–346 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Rodriguez Plaza, M.J., Stubbe, J., Vazquez, L.: Existence and stability of travelling waves in (1+1) dimensions. J. Phys. A, Math. Gen. 23, 695–705 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sakai, S., Akoh, H., Hayakawa, H.: Fluxon transfer devices. Jpn. J. Appl. Phys. 24, L771 (1985)

    Article  Google Scholar 

  29. Scharinger, S., Gürlich, C., Mints, R.G., Weides, M., Kohlstedt, H., Goldobin, E., Koelle, D., Kleiner, R.: Interference patterns of multifacet 20×(0−π) Josephson junctions with ferromagnetic barrier. Phys. Rev. B 81, 174535 (2010)

    Article  Google Scholar 

  30. Serpuchenko, I.L., Ustinov, A.V.: Experimental observation of the fine structure on the current-voltage characteristics of long Josephson junctions with a lattice of inhomogeneities. JETP Lett. 46, 549 (1987). Pis’ma Zh. Eksp. Teor. Fiz. 46, 435 (1987)

    Google Scholar 

  31. Soffer, A., Weinstein, M.I.: Theory of nonlinear Schrödinger equations and selection of the ground state. Phys. Rev. Lett. 95, 213905 (2005)

    Article  Google Scholar 

  32. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, 2nd edn. Oxford University Press, Oxford University Press (1962)

    MATH  Google Scholar 

  33. van Heijster, P.J., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9, 292–332 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. van Heijster, P.J., Doelman, A., Kaper, T.J., Nishiura, Y., Ueda, K.: Pinned fronts in heterogeneous media of jump type. Nonlinearity 24, 127–157 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vystavkin, A.N., Drachevskii, Yu.F., Koshelets, V.P., Serpuchenko, I.L.: First observation of static bound states of fluxons in long Josephson junctions with inhomogeneities. Sov. J. Low Temp. Phys. 14, 357–358 (1988)

    Google Scholar 

  36. Weides, M., Kemmler, M., Goldobin, E., Kohlstedt, H., Waser, R., Koelle, D., Kleiner, R.: 0−π Josephson tunnel junctions with ferromagnetic barrier. Phys. Rev. Lett. 97, 247001 (2006)

    Article  Google Scholar 

  37. Weides, M., Kohlstedt, H., Waser, R., Kemmler, M., Pfeiffer, J., Koelle, D., Kleiner, R., Goldobin, E.: Ferromagnetic 0−π Josephson junctions. Appl. Phys. A, Mater. Sci. Process. 89, 613–617 (2007)

    Article  Google Scholar 

  38. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  39. Yakushevich, L.V.: Nonlinear Physics of DNA. Wiley Series in Nonlinear Science (1998)

    MATH  Google Scholar 

  40. Yuan, X., Teramoto, T., Nishiura, Y.: Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction–diffusion system. Phys. Rev. E 75, 036220 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Arjen Doelman, Stephan van Gils, Chris Knight and Hadi Susanto for sharing their enthusiasm and ideas in our investigations of wave equations with inhomogeneities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianne Derks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derks, G. Stability of Fronts in Inhomogeneous Wave Equations. Acta Appl Math 137, 61–78 (2015). https://doi.org/10.1007/s10440-014-9991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9991-z

Keywords

Mathematics Subject Classification (2010)

Navigation