Skip to main content
Log in

Some Qualitative Properties of the Solution to the Magnetohydrodynamic Equations for Nonlinear Bipolar Fluids

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article we study the long-time behaviour of a system of nonlinear Partial Differential Equations (PDEs) modelling the motion of incompressible, isothermal and conducting bipolar fluids in presence of magnetic field. We mainly prove the existence of a global attractor denoted by \(\mathcal{A}\) for the semigroup associated to the aforementioned system of nonlinear PDEs. We also show that this semigroup is uniformly differentiable on \(\mathcal{A}\). This fact enables us to go further and prove that the attractor \(\mathcal{A}\) is of finite-dimensional and we give an explicit bounds for its Hausdorff and fractal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Studies in Mathematics and Its Applications, vol. 25. North-Holland, Amsterdam (1992)

    Book  MATH  Google Scholar 

  2. Bellout, H., Bloom, F., Nečas, J.: Phenomenological behavior of multipolar viscous fluids. Q. Appl. Math. 50, 559–583 (1992)

    MATH  Google Scholar 

  3. Bellout, H., Bloom, F., Nečas, J.: Solutions for incompressible non-Newtonian fluids. C. R. Math. Acad. Sci. Paris, Sér. I 317, 795–800 (1993)

    MATH  Google Scholar 

  4. Bellout, H., Bloom, F., Nečas, J.: Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differ. Equ. 19(11&12), 1763–1803 (1994)

    Article  MATH  Google Scholar 

  5. Bellout, H., Bloom, F., Nečas, J.: Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids. Asymptot. Anal. 11(2), 131–167 (1995)

    MATH  Google Scholar 

  6. Bellout, H., Bloom, F., Nečas, J.: Existence, uniqueness and stability of solutions to initial boundary value problems for bipolar fluids. Differ. Integral Equ. 8, 453–464 (1995)

    MATH  Google Scholar 

  7. Biskamp, D.: Magnetohydrodynamical Turbulence. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  8. Bloom, F.: Attractors of non-Newtonian fluids. J. Dyn. Differ. Equ. 7(1), 109–140 (1995)

    Article  MATH  Google Scholar 

  9. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)

    Google Scholar 

  10. Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. (9) 76(10), 913–964 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chepyzhov, V.V., Vishik, M.I.: Trajectory and global attractors of the three-dimensional Navier-Stokes system. Math. Notes 71(1–2), 177–193 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Chepyzhov, V.V., Vishik, M.I., Wendland, W.L.: On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete Contin. Dyn. Syst. 12(1), 27–38 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Desjardins, B., Le Bris, C.: Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equ. 11(3), 377–394 (1998)

    MATH  Google Scholar 

  14. Du, Q., Gunzburger, M.D.: Analysis of Ladyzhenskaya model for incompressible viscous flow. J. Math. Anal. Appl. 155, 21–45 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Freshe, J., Ruzicka, M.: Non-homogeneous generalized Newtonian fluids. Math. Z. 260(2), 353–375 (2008)

    Google Scholar 

  17. Gerbeau, J.-F., Le Bris, C.: Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differ. Equ. 2(3), 427–452 (1997)

    MATH  Google Scholar 

  18. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, New York (2006)

    Book  MATH  Google Scholar 

  19. Gunzburger, M.D., Trenchea, C.: Analysis of an optimal control problem for the three-dimensional coupled modified Navier-Stokes and Maxwell equations. J. Math. Anal. Appl. 333(1), 295–310 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gunzburger, M.D., Ladyzhenskaya, O.A., Peterson, J.S.: On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations. J. Math. Fluid Mech. 6(4), 462–482 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Ladyzhenskaya, O.A., Solonnikov, V.: Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid. Tr. Mat. Inst. Steklova 69, 115–173 (1960)

    Google Scholar 

  22. Ladyzhenskaya, O.A.: Mixed Boundary-Value Problem for the Hyperbolic Equation. Moscow (1963)

  23. Ladyzhensakya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    Google Scholar 

  24. Ladyzhensakya, O.A.: New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them. In: Boundary Value Problems of Mathematical Physics V. American Mathematical Society, Providence, RI (1970)

    Google Scholar 

  25. Ladyzhenskaya, O.A.: Boundary-Value Problems of Mathematical Physics. Moscow (1973)

  26. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  27. Malek, J., Nečas, J., Novotný, A.: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer. Czechoslov. Math. J. 42(3), 549–576 (1992)

    MATH  Google Scholar 

  28. Málek, J., Nečas, J., Ru̇žička, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2. Adv. Differ. Equ. 6(3), 257–302 (2001)

    MATH  Google Scholar 

  29. Málek, J., Něcas, J., Rokyta, M., Ru̇žička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

    Book  MATH  Google Scholar 

  30. Nečas, J., Šilhavý, M.: Multipolar viscous fluids. Q. Appl. Math. XLIX(2), 247–266 (1991)

    Google Scholar 

  31. Nečas, J., Novotný, A., Šilhavý, M.: Global solution to the compressible isothermal multipolar fluids. J. Math. Anal. Appl. 162, 223–242 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Razafimandimby, P.A.: Trajectory attractor for a non-autonomous magnetohydrodynamic equations of non-Newtonian fluids. Dyn. Partial Differ. Equ. 9(3), 177–203 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  34. Samokhin, V.N.: On a system of equations in the magnetohydrodynamics of nonlinearly viscous media. Differ. Equ. 27(5), 628–636 (1991)

    MATH  MathSciNet  Google Scholar 

  35. Samokhin, V.N.: Existence of a solution of a modification of a system of equations of magnetohydrodynamics. Math. USSR Sb. 72(2), 373–385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Samokhin, V.N.: Stationary problems of the magnetohydrodynamics of non-Newtonian media. Sib. Math. J. 33(4), 654–662 (1993)

    Article  MathSciNet  Google Scholar 

  37. Samokhin, V.N.: The operator form and solvability of equations of the magnetohydrodynamics of nonlinearly viscous media. Differ. Equ. 36(6), 904–910 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  39. Stupyalis, L.: An initial-boundary value problem for a system of equations of magnetohydrodynamics. Lith. Math. J. 40(2), 176–196 (2000)

    Article  MathSciNet  Google Scholar 

  40. Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  41. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. In: Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Google Scholar 

Download references

Acknowledgement

The author’s research is supported by the Austrian Science Foundation through the Lise-Meitner-Programm M1487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul André Razafimandimby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razafimandimby, P.A. Some Qualitative Properties of the Solution to the Magnetohydrodynamic Equations for Nonlinear Bipolar Fluids. Acta Appl Math 138, 213–240 (2015). https://doi.org/10.1007/s10440-014-9964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9964-2

Keywords

Mathematics Subject Classification (2000)

Navigation