Skip to main content

Advertisement

Log in

Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a mathematical model for malaria transmission which takes into account of the increase of host’s attractiveness to mosquitoes when the host harbours the parasite’s gametocytes. We investigate how this behavioral manipulation by malaria parasite may impact the optimal interventions targeted to infectious humans like treatment and screening activities. In particular, our analysis suggests that it may produce an increase of total costs associated to the disease and its control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anita, S., Arnautu, V., Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, Boston (2010)

    Google Scholar 

  2. Agusto, F.B., Tchuenche, J.M.: Control strategies for the spread of malaria in humans with variable attractiveness. Math. Popul. Stud. 20, 82–100 (2013)

    Article  MathSciNet  Google Scholar 

  3. Agusto, F.B., Marcus, N., Okosun, K.O.: Application of optimal control to the epidemiology of malaria. Electron. J. Differ. Equ. 2012, 1–22 (2012)

    Article  MathSciNet  Google Scholar 

  4. Buonomo, B.: A simple analysis of vaccination strategies for rubella. Math. Biosci. Eng. 8, 677–687 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buonomo, B.: On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases. J. Biol. Syst. 19, 263–279 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buonomo, B., Vargas-De-León, C.: Stability and bifurcation analysis of a vector-bias model of malaria transmission. Math. Biosci. 242, 59–67 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chamchod, F., Britton, N.F.: Analysis of a vector-bias model on malaria transmission. Bull. Math. Biol. 73, 639–657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cornet, S., Nicot, A., Rivero, A., Gandon, S.: Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malar. J. 12, 179 (2013)

    Article  Google Scholar 

  9. Cornet, S., Nicot, A., Rivero, A., Gandon, S.: Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol. Lett. 16, 323–329 (2013)

    Article  Google Scholar 

  10. Drakeley, C., Sutherland, C., Bouserna, J.T., Sauerwein, R.W., Targett, G.A.T.: The epidemiology of plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 22, 424–430 (2006)

    Article  Google Scholar 

  11. Felipe, J.A.N., Riley, E.M., Drakeley, C.J., Sutherland, C.J., Ghani, A.C.: Determination of the processes driving the aquisition of immunity to malaria using a mathematical transmission. PLoS Comput. Biol. 3, e255 (2007)

    Article  Google Scholar 

  12. Garba, S.M., Gumel, A.B., Abu Bakar, M.R.: Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215, 11–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gupta, S., Swinton, J., Anderson, R.M.: Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. Lond. B, Biol. Sci. 256, 231–238 (1994)

    Article  Google Scholar 

  14. Kingsolver, J.G.: Mosquito host choice and the epidemiology of malaria. Am. Nat. 130, 811–827 (1987)

    Article  Google Scholar 

  15. Kong, Q., Qiu, Z., Sang, Z., Zou, Y.: Optimal control of a vector–host epidemics model. Math. Control Relat. Fields 1, 493–508 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two–strain tuberculosis model. Discrete Contin. Dyn. Syst., Ser. B 2, 473–482 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lacroix, R., Mukabana, W.R., Gouagna, L.C., Koella, J.C.: Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol. 3, e298 (2005)

    Article  Google Scholar 

  18. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall/CRC Mathematical and Computational Biology Series. Chapman & Hall, Boca Raton (2007)

    MATH  Google Scholar 

  19. MATLAB. Matlab release 12. The mathworks Inc., Natich (2000)

  20. Macdonald, G.: The Epidemiology and Control of Malaria. Oxford University Press, London (1957)

    Google Scholar 

  21. Murray, C.J.L., Rosenfeld, L.C., Lim, S.S., et al.: Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413–431 (2012)

    Article  Google Scholar 

  22. Olayemi, I.K., Ande, A.T.: Life table analysis of anopheles gambiae (diptera: culicidae) in relation to malaria transmission. J. Vector Borne Dis. 46, 295–298 (2009)

    Google Scholar 

  23. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106, 136–145 (2011)

    Article  Google Scholar 

  24. Okosun, K.O., Makinde, O.D., Takaidza, I.: Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl. Math. Model. 37, 3802–3820 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ozair, M., Lashari, A.A., Jung, I.H., Okosun, K.O.: Stability analysis and optimal control of a vector–borne disease with nonlinear incidence. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 595487

  26. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962)

    MATH  Google Scholar 

  27. Prosper, O., Saucedo, O., Thompson, D., Torres–Garcia, G., Wang, X., Castillo–Chavez, C.: Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Math. Biosci. Eng. 8, 141–170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sherman, I.W. (ed.): Malaria: Parasite Biology, Pathogenesis and Protection. ASM Press, Washington (1998)

    Google Scholar 

  29. Wan, H., Cui, J.: A model for the transmission of malaria. Discrete Contin. Dyn. Syst., Ser. B 11, 479–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vargas–De–León, C.: Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Math. Biosci. Eng. 9, 165–174 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. World, H.: Organization, Malaria, Fact sheet n.94, March 2013 (Accessed Jul 15, 2013). http://www.who.int/mediacentre/factsheets/fs094/en/#

Download references

Acknowledgements

We would like to thank two anonymous referees for their careful reading and valuable comments, which have led to the improvement of our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Buonomo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buonomo, B., Vargas-De-León, C. Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control. Acta Appl Math 132, 127–138 (2014). https://doi.org/10.1007/s10440-014-9894-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9894-z

Keywords

Navigation