Skip to main content
Log in

Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hydrogel precursors are liquid solutions that are prone to leaking from the defect site once implanted in vivo. Therefore, the objective of the current study was to create a hydrogel precursor that exhibited a yield stress. Additionally, devitalized cartilage extracellular matrix (DVC) was mixed with DVC that had been solubilized and methacrylated (MeSDVC) to create hydrogels that were chondroinductive. Precursors composed of 10% MeSDVC or 10% MeSDVC with 10% DVC were first evaluated rheologically, where non-Newtonian behavior was observed in all hydrogel precursors. Rat bone marrow stem cells (rBMSCs) were mixed in the precursor solutions, and the solutions were then crosslinked and cultured in vitro for 6 weeks with and without exposure to human transforming growth factor β3 (TGF-β3). The compressive modulus, gene expression, biochemical content, swelling, and histology of the gels were analyzed. The DVC-containing gels consistently outperformed the MeSDVC-only group in chondrogenic gene expression, especially at 6 weeks, where the relative collagen II expression of the DVC-containing groups with and without TGF-β3 exposure was 40- and 78-fold higher, respectively, than that of MeSDVC alone. Future work will test for chondrogenesis in vivo and overall, these two cartilage-derived components are promising materials for cartilage tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Adkisson, H. D., J. A. Martin, R. L. Amendola, C. Milliman, K. A. Mauch, A. B. Katwal, M. Seyedin, A. Amendola, P. R. Streeter, and J. A. Buckwalter. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am. J. Sports Med. 38:1324–1333, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armstrong, C., and V. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. 64:88–94, 1982.

    CAS  PubMed  Google Scholar 

  3. Beck, E. C., B. L. Lohman, D. B. Tabakh, S. L. Kieweg, S. H. Gehrke, C. J. Berkland, and M. S. Detamore. Enabling surgical placement of hydrogels through achieving paste-like rheological behavior in hydrogel precursor solutions. Ann. Biomed. Eng. 7:1–8, 2015.

    Google Scholar 

  4. Benders, K., P. van Weeren, S. Badylak, D. Saris, W. Dhert, and J. Malda. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31:169–176, 2013.

    Article  CAS  PubMed  Google Scholar 

  5. Brigham, M., A. Bick, E. Lo, A. Bendali, J. Burdick, and A. Khademhosseini. Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. A 15:1645–1653, 2009.

    Article  CAS  Google Scholar 

  6. Burdick, J. A., R. L. Mauck, J. H. Gorman, 3rd, and R. C. Gorman. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci. Transl. Med. 5:176ps4, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cha, M., S. Do, G. Park, P. Du, K.-C. Han, D. Han, and K. Park. Induction of re-differentiation of passaged rat chondrocytes using a naturally obtained extracellular matrix microenvironment. Tissue Eng. A 19:978–988, 2013.

    Article  CAS  Google Scholar 

  8. Cheng, N.-C., B. T. Estes, H. A. Awad, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. A 15:231–241, 2008.

    Article  Google Scholar 

  9. Cheng, N.-C., B. T. Estes, T.-H. Young, and F. Guilak. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen. Med. 6:81–93, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng, N.-C., B. Estes, T.-H. Young, and F. Guilak. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng. A 19:484–496, 2013.

    Article  CAS  Google Scholar 

  11. Chun, S. Y., G. J. Lim, T. G. Kwon, E. K. Kwak, B. W. Kim, A. Atala, and J. J. Yoo. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28:4251–4256, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Decaris, M., B. Binder, M. Soicher, A. Bhat, and J. Leach. Cell-derived matrix coatings for polymeric scaffolds. Tissue Eng. A 18:2148–2157, 2012.

    Article  CAS  Google Scholar 

  13. DeKosky, B., N. Dormer, G. Ingavle, C. Roatch, J. Lomakin, M. Detamore, and S. Gehrke. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. C 16:1533–1542, 2010.

    Article  CAS  Google Scholar 

  14. Dennis, S., M. Detamore, S. Kieweg, and C. Berkland. Mapping glycosaminoglycan-hydroxyapatite colloidal gels as potential tissue defect fillers. Langmuir 30:3528–3537, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elder, A., N. Dangelo, S. Kim, and N. Washburn. Conjugation of β-sheet peptides to modify the rheological properties of hyaluronic acid. Biomacromolecules 12:2610–2616, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Elisseeff, J., C. Puleo, F. Yang, and B. Sharma. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res. 8:150–161, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Freytes, D. O., J. Martin, S. S. Velankar, A. S. Lee, and S. F. Badylak. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Garrigues, N. W., D. Little, J. Sanchez-Adams, D. S. Ruch, and F. Guilak. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J. Biomed. Mater. Res. A 102:3998–4008, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gershlak, J. R., J. I. Resnikoff, K. E. Sullivan, C. Williams, R. M. Wang, and L. D. Black. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 439:161–166, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38:799–809, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanematsu, A., S. Yamamoto, M. Ozeki, T. Noguchi, I. Kanatani, O. Ogawa, and Y. Tabata. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Keane, T. J., I. T. Swinehart, and S. F. Badylak. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34, 2015.

    Article  CAS  PubMed  Google Scholar 

  23. Khanlari, A., M. S. Detamore, and S. H. Gehrke. Increasing cross-linking efficiency of methacrylated chondroitin sulfate hydrogels by copolymerization with oligo (ethylene glycol) diacrylates. Macromolecules 46:9609–9617, 2013.

    Article  CAS  Google Scholar 

  24. Kwon, J. S., S. M. Yoon, S. W. Shim, J. H. Park, K. J. Min, H. J. Oh, J. H. Kim, Y. J. Kim, J. J. Yoon, and B. H. Choi. Injectable extracellular matrix hydrogel developed using porcine articular cartilage. Int. J. Pharm. 454:183–191, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Levorson, E., O. Hu, P. Mountziaris, F. Kasper, and A. Mikos. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 2: Construct devitalization and determination of chondroinductive capacity. Tissue Eng. C 20:358–372, 2014.

    Article  CAS  Google Scholar 

  26. Liu, Y., Y. Zhang, P. Dong, R. An, C. Xue, Y. Ge, L. Wei, and X. Liang. Digestion of nucleic acids starts in the stomach. Sci. Rep. 5:11936, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, H., M. Charati, I. Kim, and J. Burdick. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials 33:2145–2153, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Mansour, J. M. Biomechanics of cartilage. In: Kinesiology: The Mechanics and Pathomechanics of Human Movement, edited by C. A. Oatis. Baltimore: Lippincott Williams & Wilkins, 2003, pp. 66–79.

    Google Scholar 

  30. McLennan, A., A. Bates, P. Turner, and M. White. BIOS Instant Notes in Molecular Biology. New York: Taylor & Francis, 2012.

    Google Scholar 

  31. Renth, A. N., and M. S. Detamore. Leveraging “raw materials” as building blocks and bioactive signals in regenerative medicine. Tissue Eng. B 18:341–362, 2012.

    Article  CAS  Google Scholar 

  32. Rowland, C., D. Lennon, A. Caplan, and F. Guilak. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials 34:5802–5812, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rughani, R. V., M. C. Branco, D. J. Pochan, and J. P. Schneider. De novo design of a shear-thin recoverable peptide-based hydrogel capable of intrafibrillar photopolymerization. Macromolecules 43:7924–7930, 2010.

    Article  CAS  Google Scholar 

  34. Schwarz, S., A. F. Elsaesser, L. Koerber, E. Goldberg-Bockhorn, A. M. Seitz, C. Bermueller, L. Dürselen, A. Ignatius, R. Breiter, and N. Rotter. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J. Tissue Eng. Regen. Med. 2012. doi:10.1002/term.1650.

    PubMed Central  Google Scholar 

  35. Schwarz, S., L. Koerber, A. F. Elsaesser, E. Goldberg-Bockhorn, A. M. Seitz, L. Durselen, A. Ignatius, P. Walther, R. Breiter, and N. Rotter. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. A 18:2195–2209, 2012.

    Article  CAS  Google Scholar 

  36. Seif-Naraghi, S. B., D. Horn, P. J. Schup-Magoffin, and K. L. Christman. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 8:3695–3703, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seif-Naraghi, S. B., M. A. Salvatore, P. J. Schup-Magoffin, D. P. Hu, and K. L. Christman. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. A 16:2017–2027, 2010.

    Article  CAS  Google Scholar 

  38. Sutherland, A. J., E. C. Beck, S. C. Dennis, G. L. Converse, R. A. Hopkins, C. J. Berkland, and M. S. Detamore. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One 10:e0121966, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sutherland, A. J., G. L. Converse, R. A. Hopkins, and M. S. Detamore. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv. Healthc. Mater. 4:29–39, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tatman, P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, D.-H. Kim, and A. Gee. Multi-scale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. B 21:543–559, 2015.

    Article  Google Scholar 

  41. Todd, R. H., and S. K. Daniel. Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007, 2008.

    Article  Google Scholar 

  42. Villanueva, I., C. A. Weigel, and S. J. Bryant. Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater. 5:2832–2846, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Visser, J., P. A. Levett, N. C. te Moller, J. Besems, K. W. Boere, M. H. van Rijen, J. C. de Grauw, W. J. Dhert, P. R. van Weeren, and J. Malda. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng. A 21:1195–1206, 2015.

    Article  CAS  Google Scholar 

  44. Wan, Y. S., S. Wei-Heng, and A. A. Ilhan. Elastic and yield behavior of strongly flocculated colloids. J. Am. Ceram. Soc. 82:616–624, 2004.

    Article  Google Scholar 

  45. Wang, Q., Z. Gu, S. Jamal, M. S. Detamore, and C. Berkland. Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng. A 19:2586–2593, 2013.

    Article  CAS  Google Scholar 

  46. Wang, Q., S. Jamal, M. Detamore, and C. Berkland. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J. Biomed. Mater. Res. A 96:520–527, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, Q., L. Wang, M. S. Detamore, and C. Berkland. Biodegradable colloidal gels as moldable tissue engineering scaffolds. Adv. Mater. 20:236–239, 2008.

    Article  CAS  Google Scholar 

  48. Wang, Q., J. Wang, Q. Lu, M. Detamore, and C. Berkland. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials 31:4980–4986, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Z., Y. Shi, X. Wei, J. He, S. Yang, G. Dickson, J. Tang, J. Xiang, C. Song, and G. Li. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng. C 16:865–876, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the University of Kansas Macromolecule and Vaccine Stabilization Center and the Tertiary Oil Recovery Program for their assistance with particle sizing, the members of the KU Biomaterials and Tissue Engineering Lab who helped with porcine cartilage harvesting, and Heather Shinogle for her assistance with SEM imaging. We would like to recognize funding from the Kansas Bioscience Authority Rising Star Award, the National Institutes of Health via the KU Post Baccalaureate Research Education Program (NIH R25 GM078441), the National Science Foundation Graduate Research Fellowship (E.C.B.), the KU Graduate Fellowship (E.A.K), and the Madison & Lila Self Graduate Fellowship Educational Award (E.A.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Detamore.

Additional information

Associate Editor Akhilesh Gaharwar oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, E.C., Barragan, M., Tadros, M.H. et al. Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Ann Biomed Eng 44, 1863–1880 (2016). https://doi.org/10.1007/s10439-015-1547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1547-5

Keywords

Navigation