Skip to main content
Log in

Coupled Simulation of Heart Valves: Applications to Clinical Practice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The last few decades have seen great advances in the understanding of heart valves, and consequently, in the development of novel treatment modalities and surgical procedures for valves afflicted by disease. This is due in part to the profound advancements in computing technology and noninvasive medical imaging techniques that have made it possible to numerically model the complex heart valve systems characterized by distinct features at different length scales and various interacting processes. In this article, we highlight the importance of explicitly coupling these multiple scales and diverse processes to accurately simulate the true behavior of the heart valves, in health and disease. We examine some of the computational modeling studies that have a direct consequence on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Argento, G., M. Simonet, C. W. Oomens, and F. P. Baaijens. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering. J. Biomech. 45:2893–2898, 2012.

    CAS  PubMed  Google Scholar 

  2. Atkins, S. K., K. Cao, N. M. Rajamannan, and P. Sucosky. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech. Model. Mechanobiol. 1–17, 2014.

  3. Auricchio, F., M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. Biomed. Eng. 17:277–285, 2014.

    CAS  Google Scholar 

  4. Auricchio, F., M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 17:1347–1357, 2014.

    CAS  Google Scholar 

  5. Auricchio, F., M. Conti, S. Morganti, and P. Totaro. A computational tool to support pre-operative planning of stentless aortic valve implant. Med. Eng. Phys. 33:1183–1192, 2011.

    CAS  PubMed  Google Scholar 

  6. Bach, D. S. Prevalence and characteristics of unoperated patients with severe aortic stenosis. J. Heart Valve Dis. 20:284–291, 2011.

    PubMed  Google Scholar 

  7. Balguid, A., N. J. Driessen, A. Mol, J. P. Schmitz, F. Verheyen, C. V. Bouten, and F. Baaijens. Stress related collagen ultrastructure in human aortic valves—implications for tissue engineering. J. Biomech. 41:2612–2617, 2008.

    PubMed  Google Scholar 

  8. Balzani, D., P. Neff, J. Schröder, and G. A. Holzapfel. A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43:6052–6070, 2006.

  9. Barker, A. J., and M. Markl. Editorial, the role of hemodynamics in bicuspid aortic valve disease. Eur. J. Cardiothorac. Surg. 39:805–806, 2011.

    PubMed  Google Scholar 

  10. Barocas, V. H., and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119:137–145, 1997.

    CAS  PubMed  Google Scholar 

  11. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II—a structural constitutive model. J. Biomech. Eng. 122:327–335, 2000.

    CAS  PubMed  Google Scholar 

  12. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122:23–30, 2000.

    CAS  PubMed  Google Scholar 

  13. Blaha, P., K. Schwarz, P. Sorantin, and S. Trickey. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59:399–415, 1990.

    CAS  Google Scholar 

  14. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, and P. T. O’Gara. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease) Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 52:e1–e142, 2008.

    PubMed  Google Scholar 

  15. Boudreau, N., and P. Jones. Extracellular matrix and integrin signalling: the shape of things to come. Biochem. J. 339:481–488, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Buchanan, R. M., and M. S. Sacks. Interlayer micromechanics of the aortic heart valve leaflet. Biomech. Model. Mechanobiol. 1–14, 2013.

  17. Cacciola, G., G. Peters, P. Schreurs, and J. Janssen. Development and testing of a synthetic fiber reinforced three-leaflet heart valve. 3:547–550, 1997.

  18. Cataloglu, A., P. Gould, and R. Clark. Validation of a simplified mathematical model for the stress analysis of human aortic heart valves. J. Biomech. 8:347–348, 1975.

    CAS  PubMed  Google Scholar 

  19. Chan, K. S., W. Liang, W. L. Francis, and D. P. Nicolella. A multiscale modeling approach to scaffold design and property prediction. J. Mech. Behav. Biomed. Mater. 3:584–593, 2010.

    CAS  PubMed  Google Scholar 

  20. Chester, A. H., M. Misfeld, and M. H. Yacoub. Receptor-mediated contraction of aortic valve leaflets. J. Heart Valve Dis. 9:250–2544; discussion 254–255, 2000.

  21. Christie, G. W., and B. G. Barratt-Boyes. Biaxial mechanical properties of explanted aortic allograft leaflets. Ann. Thorac. Surg. 60:S160–S164, 1995.

    CAS  PubMed  Google Scholar 

  22. Christie, G., and R. Stephenson. Modelling the Mechanical Role of the Fibrosa and Ventricularis in the Porcine Bioprosthesis, pp. 815–824, 1989.

  23. Cloots, R. J., J. A. van Dommelen, S. Kleiven, and M. G. Geers. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech. Model. Mechanobiol. 12:137–150, 2013.

    CAS  PubMed  Google Scholar 

  24. Conti, C. A., A. Della Corte, E. Votta, L. Del Viscovo, C. Bancone, L. S. De Santo, and A. Redaelli. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140:890–896. e2, 2010.

  25. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008, 2002.

    PubMed  Google Scholar 

  26. Croft, L. R., and M. R. Kaazempur Mofrad. Computational Modeling of Aortic Heart-VALVE mechanics A Cross Multiple Scales, pp. 255–275, 2010.

  27. Dasi, L. P., H. A. Simon, P. Sucosky, and A. P. Yoganathan. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36:225–237, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. David, T. E., and C. M. Feindel. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J. Thorac. Cardiovasc. Surg. 103:617–621; discussion 622, 1992.

  29. De Hart, J., F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36:699–712, 2003.

    PubMed  Google Scholar 

  30. Doumanidis, C. C. Nanomanufacturing of random branching material architectures. Microelectron. Eng. 86:467–478, 2009.

    CAS  Google Scholar 

  31. Driessen, N. J., R. A. Boerboom, J. M. Huyghe, C. V. Bouten, and F. P. Baaijens. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125:549–557, 2003.

    PubMed  Google Scholar 

  32. Driessen, N. J., C. V. Bouten, and F. P. Baaijens. Improved prediction of the collagen fiber architecture in the aortic heart valve. J. Biomech. Eng. 127:329–336, 2005.

    PubMed  Google Scholar 

  33. Driessen, N. J., M. A. Cox, C. V. Bouten, and F. P. Baaijens. Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech. Model. Mechanobiol. 7:93–103, 2008.

    PubMed Central  PubMed  Google Scholar 

  34. Driessen, N. J., A. Mol, C. V. Bouten, and F. P. Baaijens. Modeling the mechanics of tissue-engineered human heart valve leaflets. J. Biomech. 40:325–334, 2007.

    PubMed  Google Scholar 

  35. Dumont, K., J. Stijnen, J. Vierendeels, F. Van De Vosse, and P. Verdonck. Validation of a fluid–structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput. Methods Biomech. Biomed. Eng. 7:139–146, 2004.

    CAS  Google Scholar 

  36. Engelmayr, G. C. Jr., L. Soletti, S. C. Vigmostad, S. G. Budilarto, W. J. Federspiel, K. B. Chandran, D. A. Vorp, and M. S. Sacks. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann. Biomed. Eng. 36:700–712, 2008.

  37. Engelmayr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2532, 2003.

    CAS  PubMed  Google Scholar 

  38. Fan, R., A. S. Bayoumi, P. Chen, C. M. Hobson, W. R. Wagner, M. J. E. Jr, and M. S. Sacks. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J. Biomech. 46:662–669, 2013.

    PubMed Central  PubMed  Google Scholar 

  39. Farokhzad, O. C., and R. Langer. Impact of nanotechnology on drug delivery. ACS Nano 3:16–20, 2009.

    CAS  PubMed  Google Scholar 

  40. Fedak, P. W., S. Verma, T. E. David, R. L. Leask, R. D. Weisel, and J. Butany. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106:900–904, 2002.

    PubMed  Google Scholar 

  41. Filip, D. A., A. Radu, and M. Simionescu. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59:310–320, 1986.

    CAS  PubMed  Google Scholar 

  42. Freutel, M., H. Schmidt, L. Duerselen, A. Ignatius, and F. Galbusera. Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clin. Biomech. 29:363–372, 2014.

    Google Scholar 

  43. Friedrichs, J., A. Taubenberger, C. M. Franz, and D. J. Muller. Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM. J. Mol. Biol. 372:594–607, 2007.

    CAS  PubMed  Google Scholar 

  44. Gharacholou, S. M., B. L. Karon, C. Shub, and P. A. Pellikka. Aortic valve sclerosis and clinical outcomes: moving toward a definition. Am. J. Med. 124:103–110, 2011.

    PubMed  Google Scholar 

  45. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. F. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, and C. Amer. Heart Assoc Stat, and S. Stroke Stat. Heart disease and stroke statistics-2014 update a report from the American Heart Association. Circulation 129:E28–E292, 2014.

    PubMed  Google Scholar 

  46. Goktepe, S., O. J. Abilez, K. K. Parker, and E. Kuhl. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265:433–442, 2010.

    PubMed  Google Scholar 

  47. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann. Biomed. Eng. 26:534–545, 1998.

    CAS  PubMed  Google Scholar 

  48. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69:1851–1857, 2000.

    CAS  PubMed  Google Scholar 

  49. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119:753–763, 2000.

    CAS  PubMed  Google Scholar 

  50. Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34:1509–1518, 2006.

    PubMed  Google Scholar 

  51. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34:315–325, 2006.

    PubMed  Google Scholar 

  52. Grbic, S., T. Mansi, R. Ionasec, I. Voigt, H. Houle, M. John, M. Schoebinge, N. Navab, and D. Comaniciu. Image-based computational models for TAVI planning: from CT images to implant deployment. Medical image computing and computer-assisted intervention-MICCAI 2013. 16th International Conference. Proceedings: LNCS 8150:395–402, 2013.

  53. Grunkemeier, G. L., and S. H. Rahimtoola. Artificial heart valves. Annu. Rev. Med. 41:251–263, 1990.

    CAS  PubMed  Google Scholar 

  54. Guidry, C., and F. Grinnell. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell Sci. 79:67–81, 1985.

    CAS  PubMed  Google Scholar 

  55. Henninger, H. B., S. P. Reese, A. E. Anderson, and J. A. Weiss. Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. H. 224:801–812, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 43:146–155, 2010.

    PubMed  Google Scholar 

  58. Hinz, B., S. H. Phan, V. J. Thannickal, M. Prunotto, A. Desmoulière, J. Varga, O. De Wever, M. Mareel, and G. Gabbiani. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180:1340–1355, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Holzapfel, G. A. Nonlinear Solid Mechanics. Chichester: Wiley, 2000.

  60. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Google Scholar 

  61. Huang, H. S. Micromechanical Simulations of Heart Valve Tissues. 2004.

  62. Huang, S., and H. S. Huang. Virtualisation of stress distribution in heart valve tissue. Comput. Methods Biomech. Biomed. Engin. 17:1696–1704, 2014.

    PubMed  Google Scholar 

  63. Huang, H. S., J. Liao, and M. S. Sacks. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129:880–889, 2007.

    PubMed  Google Scholar 

  64. Huang, S., H. S. Huang, and IEEE. Virtual experiments of heart valve tissues. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6645–6648, 2012.

  65. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Dordrecht: Kluwer Academic Publishers, 2002, i pp.

  66. Jahed, Z., H. Shams, M. Mehrbod, and M. R. K. Mofrad. Mechanotransduction pathways linking the extracellular matrix to the nucleus. In: International Review of Cell and Molecular Biology, edited by W. J. Kwang. Academic Press, 2014, pp. 171–220.

  67. Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, III, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48–56, 2011.

    PubMed Central  PubMed  Google Scholar 

  68. Katayama, S., N. Umetani, T. Hisada, and S. Sugiura. Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J. Thorac. Cardiovasc. Surg. 145:1570–1576, 2013.

    PubMed  Google Scholar 

  69. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36:262–275, 2008.

    PubMed  Google Scholar 

  70. Koch, T., B. Reddy, P. Zilla, and T. Franz. Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Eng. 13:225–234, 2010.

    CAS  Google Scholar 

  71. Kolahi, K. S., and M. R. Mofrad. Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:625–639, 2010.

    CAS  PubMed  Google Scholar 

  72. Kouznetsova, V., W. Brekelmans, and F. Baaijens. An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27:37–48, 2001.

  73. Krucinski, S., I. Vesely, M. Dokainish, and G. Campbell. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26:929–943, 1993.

    CAS  PubMed  Google Scholar 

  74. Kunzelman, K., M. Reimink, and R. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Vascular 5:427–434, 1997.

    CAS  Google Scholar 

  75. Labrosse, M. R., M. Boodhwani, B. Sohmer, and C. J. Beller. Modeling leaflet correction techniques in aortic valve repair: a finite element study. J. Biomech. 44:2292–2298, 2011.

    PubMed  Google Scholar 

  76. Lasseux, D., A. Ahmadi, X. Cleis, and J. Garnier. A macroscopic model for species transport during in vitro tissue growth obtained by the volume averaging method. Chem. Eng. Sci. 59:1949–1964, 2004.

    CAS  Google Scholar 

  77. Latif, N., P. Sarathchandra, P. Taylor, J. Antoniw, N. Brand, and M. Yacoub. Characterization of molecules mediating cell-cell communication in human cardiac valve interstitial cells. Cell Biochem. Biophys. 45:255–264, 2006.

    CAS  PubMed  Google Scholar 

  78. Latif, N., P. Sarathchandra, P. Taylor, J. Antoniw, and M. Yacoub. Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochem. Biophys. 43:275–287, 2005.

    CAS  PubMed  Google Scholar 

  79. Leask, R. L., N. Jain, and J. Butany. Endothelium and valvular diseases of the heart. Microsc. Res. Tech. 60:129–137, 2003.

    PubMed  Google Scholar 

  80. Lee, C., R. Amini, R. C. Gorman, J. H. Gorman III, and M. S. Sacks. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in vivo valvular biomaterial assessment. J. Biomech. 2013.

  81. Li, J., X. Luo, and Z. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34:1279–1289, 2001.

    CAS  PubMed  Google Scholar 

  82. Li, C., S. Xu, and A. I. Gotlieb. The progression of calcific aortic valve disease through injury, cell dysfunction, and disruptive biologic and physical force feedback loops. Cardiovas. Pathol. 22:1–8, 2013.

    Google Scholar 

  83. Lilly, L. S. Pathophysiology of Heart Disease. Boston: Lea & Febiger, pp. 167–179, 1993.

  84. Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Liu, H., Y. Sun, and C. A. Simmons. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J. Biomech. 46:1967–1971, 2013.

    PubMed  Google Scholar 

  86. Luo, Z., J. Cai, T. M. Peters, and L. Gu. Intra-Operative 2-D Ultrasound and Dynamic 3-D Aortic Model Registration for Magnetic Navigation of Transcatheter Aortic Valve Implantation. IEEE Trans. Med. Imaging 32:2152–2165, 2013.

    PubMed  Google Scholar 

  87. Luo, X., W. Li, and J. Li. Geometrical stress-reducing factors in the anisotropic porcine heart valves. J. Biomech. Eng. 125:735–744, 2003.

    CAS  PubMed  Google Scholar 

  88. Luo, X., T. Stylianopoulos, V. H. Barocas, and M. S. Shephard. Multiscale computation for bioartificial soft tissues with complex geometries. Eng. Comput. 25:87–95, 2009.

    Google Scholar 

  89. Mansi, T., B. André, M. Lynch, M. Sermesant, H. Delingette, Y. Boudjemline, and N. Ayache. Virtual Pulmonary Valve Replacement Interventions with a Personalised Cardiac Electromechanical Model. pp. 75–90, 2009.

  90. Mansi, T., I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue, M. Hackl, R. I. Ionasec, T. Noack, J. Seeburger, and D. Comaniciu. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16:1330–1346, 2012.

    PubMed  Google Scholar 

  91. Martin, C., and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 13:759–770, 2014.

    PubMed  Google Scholar 

  92. Matalanis, G., W. Y. Shi, and P. A. Hayward. Correction of leaflet prolapse extends the spectrum of patients suitable for valve-sparing aortic root replacement. Eur. J. Cardiothorac. Surg. 37:1311–1316, 2010.

    PubMed  Google Scholar 

  93. Mayne, A. S., G. W. Christie, B. H. Smaill, P. J. Hunter, and B. G. Barratt-Boyes. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques. J. Thorac. Cardiovasc. Surg. 98:170–180, 1989.

    CAS  PubMed  Google Scholar 

  94. Merryman, W. D. Mechano-potential etiologies of aortic valve disease. J. Biomech. 43:87–92, 2010.

    PubMed Central  Google Scholar 

  95. Merryman, W. D., H. S. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39:88–96, 2006.

    PubMed  Google Scholar 

  96. Miehe, C., J. Schröder, and J. Schotte. Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171:387–418, 1999.

    Google Scholar 

  97. Min, J. K., J. Leipsic, M. J. Pencina, D. S. Berman, B. Koo, C. van Mieghem, A. Erglis, F. Y. Lin, A. M. Dunning, and P. Apruzzese. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Mofrad, M. R., and R. D. Kamm. Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues. Cambridge University Press, 2014.

  99. Mofrad, M. R. and R. D. Kamm. Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics. Cambridge University Press, 2011.

  100. Mohammadi, H., F. Bahramian, and W. Wan. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med. Eng. Phys. 31:1110–1117, 2009.

    PubMed  Google Scholar 

  101. Mohler, E. R., III, F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan. Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528, 2001.

  102. Moura, L. M., S. F. Ramos, J. L. Zamorano, I. M. Barros, L. F. Azevedo, F. Rocha-Gonçalves, and N. M. Rajamannan. Rosuvastatin affecting aortic valve endothelium to slow the progression of aortic stenosis. J. Am. Coll. Cardiol. 49:554–561, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Mulholland, D. L., and A. I. Gotlieb. Cardiac valve interstitial cells: regulator of valve structure and function. Cardiovasc. Pathol. 6:167–174, 1997.

    Google Scholar 

  104. Nørgaard, B. L., J. Leipsic, S. Gaur, S. Seneviratne, B. S. Ko, H. Ito, J. M. Jensen, L. Mauri, B. De Bruyne, and H. Bezerra. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J. Am. Coll. Cardiol. 63:1145–1155, 2014.

    PubMed  Google Scholar 

  105. Otto, C. Calcification of bicuspid aortic valves. Heart 88:321–322, 2002.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Park, S., T. E. Klein, and V. S. Pande. Folding and misfolding of the collagen triple helix: markov analysis of molecular dynamics simulations. Biophys. J . 93:4108–4115, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Praveen Kumar, G., F. Cui, A. Danpinid, B. Su, J. K. F. Hon, and H. L. Leo. Design and finite element-based fatigue prediction of a new self-expandable percutaneous mitral valve stent. Comput.-Aided Des. 45:1153–1158, 2013.

  108. Price, J., P. Patitucci, and Y. Fung. Biomechanics. Mechanical Properties of Living Tissues, 1981.

  109. Prot, V., and B. Skallerud. Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput. Mech. 43:353–368, 2009.

    Google Scholar 

  110. Rabbah, J. M., N. Saikrishnan, A. W. Siefert, A. P. Yoganathan, and ASME. Developing an experimental database for mitral valve computational modeling, surgical repair, and device evaluation. ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, 2013.

  111. Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532, 2001.

    CAS  PubMed  Google Scholar 

  112. Rabkin-Aikawa, E., M. Farber, M. Aikawa, and F. J. Schoen. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J. Heart Valve Dis. 13:841–847, 2004.

    PubMed  Google Scholar 

  113. Rahmani, B., S. Tzamtzis, H. Ghanbari, G. Burriesci, and A. M. Seifalian. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 45:1205–1211, 2012.

    PubMed  Google Scholar 

  114. Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184, 2003.

    PubMed Central  PubMed  Google Scholar 

  115. Raman, S. S., R. Parthasarathi, V. Subramanian, and T. Ramasami. Role of aspartic acid in collagen structure and stability: a molecular dynamics investigation. J. Phys. Chem. B 110:20678–20685, 2006.

    CAS  PubMed  Google Scholar 

  116. Rausch, M. K., N. Famaey, T. O. Shultz, W. Bothe, D. C. Miller, and E. Kuhl. Mechanics of the mitral valve: a critical review, an in vivo parameter identification, and the effect of prestrain. Biomech. Model. Mechanobiol. 12:1053–1071, 2013.

    PubMed Central  PubMed  Google Scholar 

  117. Sacks, M. S. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–287, 2003.

    PubMed  Google Scholar 

  118. Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B 362:1369–1391, 2007.

    Google Scholar 

  119. Salsas-Escat, R., and C. Stultz. The molecular mechanics of collagen degradation: implications for human disease. Exp. Mech. 49:65–77, 2009.

    CAS  Google Scholar 

  120. Schoen, F. J., and R. J. Levy. Tissue heart valves: Current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.

    CAS  PubMed  Google Scholar 

  121. Schoenhagen, P., A. Hill, T. Kelley, Z. Popovic, and S. S. Halliburton. In vivo imaging and computational analysis of the aortic root. Application in clinical research and design of transcatheter aortic valve systems. J. Cardiovasc. Transl. Res. 4:459–469, 2011.

  122. Shahmirzadi, D., A. A. Bakhaty, and M. R. K. Mofrad. On the cell-matrix mechanobiology of the valvular interstitial cells: considerations for valve multiscale modeling. Syst. Biol. Med. (in press).

  123. Soncini, M., E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, and A. Redaelli. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31:234–243, 2009.

    PubMed  Google Scholar 

  124. Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129:757–766, 2007.

    PubMed  Google Scholar 

  125. Stevanella, M., G. Krishnamurthy, E. Votta, J. C. Swanson, A. Redaelli, and N. B. Ingels, Jr. Mitral leaflet modeling: Importance of in vivo shape and material properties. J. Biomech. 44:2229–2235, 2011.

    PubMed  Google Scholar 

  126. Stopak, D., and A. K. Harris. Connective tissue morphogenesis by fibroblast traction: I. Tissue culture observations. Dev. Biol. 90:383–398, 1982.

    CAS  PubMed  Google Scholar 

  127. Sun, W., and P. Lal. Recent development on computer aided tissue engineering—a review. Comput. Methods Programs Biomed. 67:85–103, 2002.

    PubMed  Google Scholar 

  128. Sun, W., C. Martin, and T. Pham. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16:53–76, 2014.

    CAS  PubMed  Google Scholar 

  129. Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4:190–199, 2005.

    PubMed  Google Scholar 

  130. Sun, C., and R. Vaidya. Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56:171–179, 1996.

    CAS  Google Scholar 

  131. Tadros, T. M., M. D. Klein, and O. M. Shapira. Ascending aortic dilatation associated with bicuspid aortic valve pathophysiology, molecular biology, and clinical implications. Circulation 119:880–890, 2009.

    PubMed  Google Scholar 

  132. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. 100:1484–1489, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Tang, D., C. Yang, T. Geva, and P. J. del Nido. Two-layer passive/active anisotropic FSI models with fiber orientation: MRI-Based Patient-specific modeling of right ventricular response to pulmonary valve insertion surgery. Mol. Cell. Biomech. 4:159–176, 2007.

    PubMed  Google Scholar 

  134. Taylor, P. A., P. Batten, N. J. Brand, P. S. Thomas, and M. H. Yacoub. The cardiac valve interstitial cell. Int. J. Biochem. Cell Biol. 35:113–118, 2003.

    CAS  PubMed  Google Scholar 

  135. Taylor, C. A., T. A. Fonte, and J. K. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61:2233–2241, 2013.

    PubMed  Google Scholar 

  136. Thubrikar, M. The Aortic Valve. Boca Raton: CRC Press, 1990.

  137. Tzamtzis, S., J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125–130, 2013.

    CAS  PubMed  Google Scholar 

  138. Unnikrishnan, G., V. Unnikrishnan, and J. Reddy. Constitutive material modeling of cell: a micromechanics approach. J. Biomech. Eng. 129:315–323, 2007.

    CAS  PubMed  Google Scholar 

  139. Vader, D., A. Kabla, D. Weitz, and L. Mahadevan. Strain-induced alignment in collagen gels. PLoS ONE 4:e5902, 2009.

    PubMed Central  PubMed  Google Scholar 

  140. Vesely, I. The role of elastin in aortic valve mechanics. J. Biomech. 31:115–123, 1997.

    Google Scholar 

  141. Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25:101–113, 1992.

    CAS  PubMed  Google Scholar 

  142. Votta, E., T. B. Le, M. Stevanella, L. Fusini, E. G. Caiani, A. Redaelli, and F. Sotiropoulos. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46:217–228, 2013.

    PubMed Central  PubMed  Google Scholar 

  143. Walker, G. A., K. S. Masters, D. N. Shah, K. S. Anseth, and L. A. Leinwand. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 95:253–260, 2004.

    CAS  PubMed  Google Scholar 

  144. Wang, L., S. Korossis, E. Ingham, J. Fisher, and Z. Jin. Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. J. Heart Valve Dis. 17:700–709, 2008.

    PubMed  Google Scholar 

  145. Wang, H., L. A. Leinwand, and K. Anseth. Cardiac valve cells and their microenvironment—insights from in vitro studies. Nat. Rev. Cardiol. 11(715–727):2014, 2014. doi:10.1038/nrcardio.2014.162Publishedonline14October.

    Google Scholar 

  146. Wang, H., L. A. Leinwand, and K. S. Anseth. Cardiac valve cells and their microenvironment-insights from in vitro studies. Nat. Rev. Cardiol. 11:715–727, 2014.

    PubMed Central  PubMed  Google Scholar 

  147. Wang, N., K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, and D. E. Ingber. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. U.S.A. 98:7765–7770, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Weinberg, E. J., and M. R. Kaazempur Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. (Dordrecht, Netherlands) 7:140–155, 2007.

  149. Weinberg, E. J., and M. R. Kaazempur Mofrad. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J. Biomech. 40:705–711, 2007.

    PubMed  Google Scholar 

  150. Weinberg, E. J., and M. R. Kaazempur Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.

    PubMed  Google Scholar 

  151. Weinberg, E. J., F. J. Schoen, and M. R. Mofrad. A computational model of aging and calcification in the aortic heart valve. PLoS ONE 4:e5960, 2009.

    PubMed Central  PubMed  Google Scholar 

  152. Weinberg, E. J., D. Shahmirzadi, and M. R. Mofrad. On the multiscale modeling of heart valve biomechanics in health and disease. Biomech. Model. Mechanobiol. 9:373–387, 2010.

    PubMed  Google Scholar 

  153. Wynn, T. A., and T. R. Ramalingam. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18:1028–1040, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Xu, C., C. J. Brinster, A. S. Jassar, M. Vergnat, T. J. Eperjesi, R. C. Gorman, J. H. Gorman, III, and B. M. Jackson. A novel approach to in vivo mitral valve stress analysis. Am. J. Physiol. Heart Circ. Physiol. 299:H1790–H1794, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Yacoub, M. H., and L. H. Cohn. Novel approaches to cardiac valve repair: from structure to function: Part II. Circulation 109:1064–1072, 2004.

    PubMed  Google Scholar 

  156. Yan, K. C., K. Nair, and W. Sun. Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs. J. Biomech. 43:1031–1038, 2010.

    PubMed  Google Scholar 

  157. Yang, C., D. Tang, T. Geva, and P. J. d. Nido. MRI-Based Patient-Specific Computational Modeling of Right Ventricular Response to Pulmonary Valve Insertion Surgery: A Passive Anisotropic FSI Model with Fiber Orientation, pp. 160–167, 2008.

  158. Yang, Z., J. Lin, J. Chen, and J. H. Wang. Determining substrate displacement and cell traction fields—a new approach. J. Theor. Biol. 242:607–616, 2006.

    CAS  PubMed  Google Scholar 

  159. Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009.

    CAS  PubMed  Google Scholar 

  160. Yvonnet, J., D. Gonzalez, and Q. He. Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 198:2723–2737, 2009.

    Google Scholar 

  161. Yvonnet, J., E. Monteiro, and Q. He. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J. Multiscale Comput. Eng. 11, 2013.

  162. Zarins, C. K., C. A. Taylor, and J. K. Min. Computed fractional flow reserve (FFTCT) derived from coronary CT angiography. J. Cardiovasc. Transl. Res. 6:708–714, 2013.

    PubMed Central  PubMed  Google Scholar 

  163. Zeng, X., and S. Li. Multiscale modeling and simulation of soft adhesion and contact of stem cells. J. Mech. Behav. Biomed. Mater. 4:180–189, 2011.

    PubMed  Google Scholar 

Download references

Conflict of interest

This statement is to declare that we, Ahmed Bakhaty and Mohammad Mofrad, the authors of article “Coupled Simulation of the Heart Valve: Applications to Clinical Practice” do not possess any financial relationships that might bias our work. We hereby declare that no conflict of interest exists in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. K. Mofrad.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhaty, A.A., Mofrad, M.R.K. Coupled Simulation of Heart Valves: Applications to Clinical Practice. Ann Biomed Eng 43, 1626–1639 (2015). https://doi.org/10.1007/s10439-015-1348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1348-x

Keywords

Navigation