Skip to main content
Log in

Development and Validation of Statistical Models of Femur Geometry for Use with Parametric Finite Element Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Statistical models were developed that predict male and female femur geometry as functions of age, body mass index (BMI), and femur length as part of an effort to develop lower-extremity finite element models with geometries that are parametric with subject characteristics. The process for developing these models involved extracting femur geometry from clinical CT scans of 62 men and 36 women, fitting a template finite element femur mesh to the surface geometry of each patient, and then programmatically determining thickness at each nodal location. Principal component analysis was then performed on the thickness and geometry nodal coordinates, and linear regression models were developed to predict principal component scores as functions of age, BMI, and femur length. The average absolute errors in male and female external surface geometry model predictions were 4.57 and 4.23 mm, and the average absolute errors in male and female thickness model predictions were 1.67 and 1.74 mm. The average error in midshaft cortical bone areas between the predicted geometries and the patient geometries was 4.4%. The average error in cortical bone area between the predicted geometries and a validation set of cadaver femur geometries across 5 shaft locations was 2.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control AC. 19:716–723, 1974.

    Article  Google Scholar 

  2. Bennink, H. E., J. M. Korbeeck, B. J. Janssen, and B. M. Ter Haar Romeny. Warping a neuro-anatomy atlas on 3D MRI data with radial basis functions. Proc. Int. Conf. Biomed. Eng. 3:214–218, 2006.

    Google Scholar 

  3. Besnault, B., F. Lavaste, H. Guillemot, S. Robin, and J. Y. LeCoz. A parametric finite element model of the human pelvis. Proc. Stapp Car Crash Conf. 42:P337, 1998.

    Google Scholar 

  4. Bredbenner, T. L., R. L. Mason, L. M. Havill, E. S. Orwoll, and D. P. Nicolella. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J. Bone Miner. Res. 29:2090–2100, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bryan, R., P. S. Mohan, A. Hopkins, F. Galloway, M. Taylor, and P. B. Nair. Statistical modelling of the whole human femur incorporating geometric and material properties. Med. Eng. Phys. 32:57–65, 2010.

    Article  PubMed  Google Scholar 

  6. Bryan, R., P. B. Nair, and M. Taylor. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J. Biomech. 42:2171–2176, 2009.

    Article  PubMed  Google Scholar 

  7. Carr, J. C., R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3D objects with radial basis functions. Proc. Annu. Conf. Comput. Gr. Interact. Tech. 28:67–76, 2001.

    Google Scholar 

  8. Carter, P. M., C. A. C. Flannagan, M. P. Reed, R. M. Cunningham, and J. D. Rupp. Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes. Accid. Anal. Prev. 72:146–160, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3(Suppl 3):S131–S139, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gayzik, F. S., M. M. Yu, K. A. Danelson, D. E. Slice, and J. D. Stitzel. Quantification of age-related shape change of the human rib cage through geometric morphometrics. J. Biomech. 41:1545–1554, 2008.

    Article  PubMed  Google Scholar 

  11. Heaney, R. P. Is the paradigm shifting? Bone 33:457–465, 2003.

    Article  PubMed  Google Scholar 

  12. Hu, J., J. D. Rupp, and M. P. Reed. Focusing on vulnerable populations in crashes: recent advances in finite element human models for injury biomechanics research. J. Automot. Saf. Energy 3:295–307, 2012.

    Google Scholar 

  13. Ivarsson, B. J., D. Genovese, J. R. Crandall, J. R. Bolton, C. D. Untaroiu, and D. Bose. The tolerance of the femoral shaft in combined axial compression and bending loading. Proc. Stapp Car Crash Conf. 53:251–290, 2009.

    Google Scholar 

  14. Joliffe, I. T. Principal Component Analysis. Berlin: Springer, 2002.

    Google Scholar 

  15. Keaveny, T. M., P. F. Hoffmann, M. Singh, L. Palermo, J. P. Bilezikian, S. L. Greenspan, and D. M. Black. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J. Bone Miner. Res. 23:1974–1982, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keyak, J. H., and Y. Falkinstein. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25:781–787, 2003.

    Article  PubMed  Google Scholar 

  17. Kurazume, R., K. Nakamura, T. Okada, Y. Sato, N. Sugano, T. Koyama, Y. Iwashita, and T. Hasegawa. 3D reconstruction of a femoral shape using a parametric model and two 2D fluoroscopic images. Comput. Vis. Image Underst. 113:202–211, 2009.

    Article  Google Scholar 

  18. Li, Z., J. Hu, M. P. Reed, J. D. Rupp, C. N. Hoff, J. Zhang, and B. Cheng. Development, validation, and application of a parametric pediatric head finite element model for impact simulations. Ann. Biomed. Eng. 39:2984–2997, 2011.

    Article  PubMed  Google Scholar 

  19. Lu, Y. C., A. R. Kemper, F. S. Gayzik, C. D. Untaroiu, and P. Beillas. Statistical modeling of human liver incorporating the variations in shape, size, and material properties. Proc. Stapp Car Crash Conf. 57:285–311, 2013.

    Google Scholar 

  20. Lu, Y. C., and C. D. Untaroiu. Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models. Comput. Methods Progr. Biomed. 111:613–628, 2013.

    Article  Google Scholar 

  21. Manary, M. A., M. P. Reed, C. A. C. Flannagan, and L. W. Schneider. ATD positioning based on driver posture and position. Proc. Stapp Car Crash Conf. 42:P-337, 1998.

    Google Scholar 

  22. Moran, S. G., G. McGwin, Jr., J. S. Metzger, J. E. Alonso, and L. W. Rue, 3rd. Relationship between age and lower extremity fractures in frontal motor vehicle collisions. J. Trauma 54:261–265, 2003.

    Article  PubMed  Google Scholar 

  23. Nalla, R. K., J. J. Kruzic, J. H. Kinney, and R. O. Ritchie. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35:1240–1246, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Nicolella, D. P., and T. L. Bredbenner. Development of a parametric finite element model of the proximal femur using statistical shape and density modeling. Comput. Methods Biomech. Biomed. Eng. 15:101–110, 2012.

    Article  Google Scholar 

  25. Park, B. K., J. C. Lumeng, C. N. Lumeng, S. M. Ebert, and M. P. Reed. Child body shape measurement using depth cameras and a statistical body shape model. Ergonomics 58:301–309, 2015.

    Article  PubMed  Google Scholar 

  26. Reed, M. P., S. M. Ebert, and J. J. Hallman. Effects of driver characteristics on seat belt fit. Proc. Stapp Car Crash Conf. 57:43–57, 2013.

    Google Scholar 

  27. Reed, M. P., and M. B. Parkinson. Modeling variability in torso shape for chair and seat design. Proc. ASME Design Eng. Tech. Conf. 1:562–570, 2008.

    Google Scholar 

  28. Reed, M. P., M. M. Sochor, J. D. Rupp, K. D. Klinich, and M. A. Manary. Anthropometric specification of child crash dummy pelves through statistical analysis of skeletal geometry. J. Biomech. 42:1143–1145, 2009.

    Article  PubMed  Google Scholar 

  29. Ridella, S. A., A. Beyersmith, and K. Poland. Factors associated with age-related differences in crash injury types, causation, and mechanisms. In: Proceedings of Emerging Issues in Safe and Sustainable Mobility for Older Persons TRB ANB60 Fall 2011 Conference, Washington, DC, 2011.

  30. Rupp, J. D., and C. A. C. Flannagan. Effects of occupant age on AIS 3 + injury outcome determined from analyses of fused NASS/CIREN data. In: SAE 2011 Government/Industry Meeting, Washington, DC, 2011.

  31. Shi, X., L. Cao, M. P. Reed, J. D. Rupp, C. N. Hoff, and J. Hu. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index. J. Biomech. 47:2277–2285, 2014.

    Article  PubMed  Google Scholar 

  32. Slice, D. E. Geometric morphometrics. Annu. Rev. Anthropol. 36:261–281, 2007.

    Article  Google Scholar 

  33. Toyota Motor Corporation. THUMS AM50 pedestrian/occupant model academic version 4.0, 2011.

Download references

Acknowledgments

This project was funded by the National Highway Traffic Safety Administration under Contract Number DTNH22-10-H-00288 and the National Science Foundation under Award Number 1300815. The authors would like to thank Ms. Prabha Narayanaswamy for her support on the statistical analyzes, the University of Virginia Center for Applied Biomechanics for their help in providing the CT scan data, Dr. Johan Ivarsson for providing the CT scan data, and the University of Michigan students who extracted femur geometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelyn F. Klein.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, K.F., Hu, J., Reed, M.P. et al. Development and Validation of Statistical Models of Femur Geometry for Use with Parametric Finite Element Models. Ann Biomed Eng 43, 2503–2514 (2015). https://doi.org/10.1007/s10439-015-1307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1307-6

Keywords

Navigation