Skip to main content
Log in

Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A computational framework to couple vascular growth and remodeling (G&R) with blood flow simulation in a 3D patient-specific geometry is presented. Hyperelastic and anisotropic properties are considered for the vessel wall material and a constrained mixture model is used to represent multiple constituents in the vessel wall, which was modeled as a membrane. The coupled simulation is divided into two time scales—a longer time scale for G&R and a shorter time scale for fluid dynamics simulation. G&R is simulated to evolve the boundary of the fluid domain, and fluid simulation is in turn used to generate wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, the fluid dynamics are only simulated when G&R causes significant vascular geometric change. For demonstration, this coupled model was used to study the influence of stress-mediated growth parameters, and blood flow mechanics, on the behavior of the vascular tissue growth in a model of the infrarenal aorta derived from medical image data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aparício, P., A. Mandaltsi, J. Boamah, H. Chen, A. Selimovic, M. Bratby, R. Uberoi, Y. Ventikos, and P. N. Watton. Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution. Int. J. Numer. Methods Biomed. Eng. 30(5):563–586, 2014.

    Article  Google Scholar 

  2. Baek, S., K. R. Rajagopal, and J. D. Humphrey. Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm. J. Elast. 80(1–3):13–31, 2005.

    Article  Google Scholar 

  3. Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128(1):142–149, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Burton, A. C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34(6), 1954.

  5. Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J. Comput. Phys. 244:63–79, 2013.

  6. Figueroa, A. C., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198(45):3583–3602, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Finlay, H. M., Whittaker, P., and Canham, P.B. Collagen organization in the branching region of human brain arteries. Stroke 29(8):1595–1601, 1998.

  8. Hariton, I., T. Christian Gasser, G. A. Holzapfel, et al. Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J. Theor. Biol. 248(3):460–470, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech.-A/Solids 21(3):441–463, 2002.

    Article  Google Scholar 

  10. Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45(5):805–814, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.

    Article  Google Scholar 

  12. Malek, A., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mrna in bovine aortic endothelium. Am. J. Physiol. Cell Physiol. 263(2):C389–C396, 1992.

    CAS  Google Scholar 

  13. Niedermüller, H. M. Skalicky, G. Hofecker, and A. Kment. Investigations on the kinetics of collagen-metabolism in young and old rats. Exp. Gerontol. 12(5):159–168, 1977.

    Article  PubMed  Google Scholar 

  14. Rizvi, M. A. D., L. Katwa, D. P. Spadone, and P. R. Myers. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J. Mol. Cell. Cardiol. 28(2):243–252, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Rizvi, M. A. D., and P. R. Myers. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J. Mol. Cell. Cardiol. 29(7):1779–1789, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Salsac, A.-V., S. R. Sparks, J.-M. Chomaz, and J. C. Lasheras. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560:19–51, 2006.

    Article  Google Scholar 

  17. Selimovic, A., Y. Ventikos, and P. N. Watton. Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling. Procedia IUTAM 10:396–409, 2014.

    Article  Google Scholar 

  18. Sheidaei, A., S. C. Hunley, S. Zeinali-Davarani, L. G. Raguin, and S. Baek. Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med. Eng. Phys. 33(1):80–88, 2011.

    Article  CAS  Google Scholar 

  19. Taber, L. A. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120(3):348–354, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mrna expression by shear stress. Am. J. Physiol. Cell Physiol. 38(6):C1371, 1995.

    Google Scholar 

  21. Valentín, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Valentín, A., and G. A. Holzapfel. Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief survey. Mech. Res. Commun. 42:126–133, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Valentín, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Trans. R. Soc. A 367(1902):3585–3606, 2009.

    Article  Google Scholar 

  24. Valentín, A., J. D. Humphrey, and G. A. Holzapfel. A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int. J. Numer. Methods Biomed. Eng. 29(8):822–849, 2013.

    Article  Google Scholar 

  25. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126(6):815–822, 2004.

    Article  Google Scholar 

  26. Watton, P. N., N. A. Hill, and M Heil. A mathematical model for the growth of the abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 3(2):98–113, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Watton, P. N., N. B. Raberger, G. A. Holzapfel, and Y. Ventikos. Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J. Biomech. Eng. 131(10):101003, 2009.

    Article  PubMed  Google Scholar 

  28. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9(74):2047–2058, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wilson, J. S., S. Baek, and J. D. Humphrey. Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc. R. Soc. A 469(2150):20120556, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wilson, N. M., A. K. Ortiz, and A. B. Johnson. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Devices 7(4):040923, 2013.

    Article  Google Scholar 

  31. Zeinali-Davarani, S., and S. Baek. Medical image-based simulation of abdominal aortic aneurysm growth. Mech. Res. Commun. 42:107–117, 2012.

    Article  Google Scholar 

  32. Zeinali-Davarani, S., A. Sheidaei, and S. Baek. A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms. Comput. Methods Biomech. Biomed. Eng. 14(9):803–817, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Seungik Baek for helpful discussions during the development of this work. This work was supported in part by National Heart, Lung, and Blood Institute Grant 5R21-HL-108272.

Conflict of interest

The authors do not have conflicts of interest relevant to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn C. Shadden.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Appendix

Appendix

Algorithm for coupled simulation of G&R and hemodynamics

  1. (1)

    Generate initial homeostatic state through accelerated G&R.

  2. (2)
    1. (a)

      Introduce initial mass loss to the homeostatic state.

    2. (b)

      Simulate blood flow in the initial geometry and obtain initial WSS field \(\tau _w(\mathbf{x}, t)\).

    3. (c)

      Set initial values for mass production rate \(m_i \rightarrow m^k(t)\).

  3. (3)

    Formulate the weak form for displacement \(\mathbf{u}=(u, v, w)\) from the virtual work principle,

    $$\begin{aligned} \delta I=\int _S\delta w dA-\int _s P\mathbf{n}\cdot \delta \mathbf{x}da=0 \;, \end{aligned}$$

    and solve using a nonlinear FEM solver.

  4. (4)
    1. (a)

      Generate stress measure field \(\sigma ^k(\mathbf{x}, t)\) based on deformation and constitutive relations

    2. (b)

      Update mass production rate:

      $$\begin{aligned} m^k(t)=\frac{M(t)}{M(0)}\left( K_{\sigma }\left( \sigma ^k(t)-\sigma ^h \right) -K_{\tau }\left( \tau _w(t)- \tau ^h_w \right) + \tilde{f_h}\right) \end{aligned}$$
  5. (5)

    If \(\left\| m^k(t)-m_i \right\| /\left\| m_i\right\| <\text{ tolerance }\) (in this work, tolerance\(=0.001\)),

    1. (a)

      Set \(m_i \leftarrow m^k(t)\)

    2. (b)

      Set \(t \leftarrow t+\Delta t\)

    3. (c)

      Update values for remaining fractions \(Q^k(\cdot )\) and \(q^k(\cdot )\)

    4. (d)

      Go to Step (6)

    Else,

    1. (a)

      Set \(m_i \leftarrow m^k(t)\)

    2. (b)

      Go to Step (3)

  6. (6)

    If the geometric change is significant for fluid domain,

    1. (a)

      Solve blood flow in the new geometry

    2. (b)

      Update WSS field \(\tau _w(\mathbf{x}, t)\) and pressure \(P(\mathbf{x}, t)\)

    3. (c)

      Go to Step (3)

    Else, go to Step (3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Shadden, S.C. Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry. Ann Biomed Eng 43, 1543–1554 (2015). https://doi.org/10.1007/s10439-015-1287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1287-6

Keywords

Navigation