Skip to main content
Log in

Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Basalo, I. M., N. O. Chahine, M. Kaplun, F. H. Chen, C. T. Hung, and G. A. Ateshian. Chondroitin sulfate reduces the friction coefficient of articular cartilage. J. Biomech. 40:1847–1854, 2007.

    Article  PubMed  Google Scholar 

  2. Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2:121–167, 1998.

    Article  Google Scholar 

  3. Burnham, K. P., and D. R. Anderson. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33:261–304, 2004.

    Article  Google Scholar 

  4. Caligaris, M., and G. A. Ateshian. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 16:1220–1227, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Caligaris, M., C. E. Canal, C. S. Ahmad, T. R. Gardner, and G. A. Ateshian. Investigation of the frictional response of osteoarthritic human tibiofemoral joints and the potential beneficial tribological effect of healthy synovial fluid. Osteoarthr. Cartil. 17:1327–1332, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Changzheng, C., S. Changcheng, Z. Yu, and W. Nan. Fault diagnosis for large-scale wind turbine rolling bearing using stress wave and wavelet analysis. ICEMS 3:2239–2244, 2005.

    Google Scholar 

  7. Chung, C., I. E. Erickson, R. L. Mauck, and J. A. Burdick. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng. A 14:1121–1131, 2008.

    Article  CAS  Google Scholar 

  8. Forster, H., and J. Fisher. The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 210:109–119, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Forster, H., and J. Fisher. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 213:329–345, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Graindorge, S., and G. Stachowiak. Changes occurring in the surface morphology of articular cartilage during wear. Wear 241:143–150, 2000.

    Article  CAS  Google Scholar 

  11. Hanley, J. A., and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36, 1982.

    Article  CAS  PubMed  Google Scholar 

  12. Henderson, J. H., J. F. Welter, J. M. Mansour, C. Niyibizi, A. I. Caplan, and J. E. Dennis. Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit. Tissue Eng. 13:843–853, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jones, A. R., J. P. Gleghorn, C. E. Hughes, L. J. Fitz, R. Zollner, S. D. Wainwright, B. Caterson, E. A. Morris, L. J. Bonassar, and C. R. Flannery. Binding and localization of recombinant lubricin to articular cartilage surfaces. J. Orthop. Res. 25:283–292, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Krishnan, R., M. Kopacz, and G. A. Ateshian. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22:565–570, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Liu, B. Web Data Mining. Berlin: Springer, 2011.

    Book  Google Scholar 

  16. Lizhang, J., J. Fisher, Z. Jin, A. Burton, and S. Williams. The effect of contact stress on cartilage friction, deformation and wear. Proc. Inst. Mech. Eng. H 225:461–475, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Martin, I., S. Miot, A. Barbero, M. Jakob, and D. Wendt. Osteochondral tissue engineering. J. Biomech. 40:750–765, 2007.

    Article  PubMed  Google Scholar 

  18. McGill, R., J. W. Tukey, and W. A. Larsen. Variations of box plots. Am. Stat. 32:12–16, 1978.

    Google Scholar 

  19. Morrell, K. C. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. Proc. Natl. Acad. Sci. U.S.A. 102:14819–14824, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mu, T., A. K. Nandi, and R. M. Rangayyan. Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Comput. Biol. Med. 38:1103–1111, 2008.

    Article  PubMed  Google Scholar 

  21. Rangayyan, R. M., F. Oloumi, Y. Wu, and S. Cai. Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed. Signal Process. Control 8:23–29, 2013.

    Article  Google Scholar 

  22. Reddy, N. P., B. M. Rothschild, M. Mandal, V. Gupta, and S. Suryanarayanan. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia. Ann. Biomed. Eng. 23:78–84, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12:77, 2011.

    Article  Google Scholar 

  24. Schmidt, T. A., N. S. Gastelum, Q. T. Nguyen, B. L. Schumacher, and R. L. Sah. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56:882–891, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Unsworth, A., D. Dowson, and V. Wright. The frictional behavior of human synovial joints—part i: natural joints. J. Lubr. Technol. 97:369–376, 1975.

    Article  Google Scholar 

  26. Wada, Y., M. Enjo, N. Isogai, R. Jacquet, E. Lowder, and W. J. Landis. Development of bone and cartilage in tissue-engineered human middle phalanx models. Tissue Eng. A 15:3765–3778, 2009.

    Article  CAS  Google Scholar 

  27. Whitney, G. A., K. Jayaraman, J. E. Dennis, and J. M. Mansour. Scaffold-free cartilage subjected to frictional shear stress demonstrates damage by cracking and surface peeling. J. Tissue Eng. Regen. Med. 2014. doi:10.1002/term.1925.

    PubMed  Google Scholar 

  28. Whitney, G. A., H. Mera, M. Weidenbecher, A. Awadallah, J. M. Mansour, and J. E. Dennis. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. Biores. Open Access 1:157–165, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NIDCR grant number R01 DE015322 (J.E.D.), and NIH NIAMS Grant Number P01 AR053622 (J.M.M), and under the Ruth L. Kirschstein National Research Service Award T32 AR007505 from the NIH NIAMS (G.A.W.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Dennis.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitney, G.A., Mansour, J.M. & Dennis, J.E. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress. Ann Biomed Eng 43, 2056–2068 (2015). https://doi.org/10.1007/s10439-015-1269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1269-8

Keywords

Navigation