Skip to main content
Log in

Smartphones for Cell and Biomolecular Detection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in biomedical science and technology have played a significant role in the development of new sensors and assays for cell and biomolecular detection. Generally, these efforts are aimed at reducing the complexity and costs associated with diagnostic testing so that it can be performed outside of a laboratory or hospital setting, requiring minimal equipment and user involvement. In particular, point-of-care (POC) testing offers immense potential for many important applications including medical diagnosis, environmental monitoring, food safety, and biosecurity. When coupled with smartphones, POC systems can offer portability, ease of use and enhanced functionality while maintaining performance. This review article focuses on recent advancements and developments in smartphone-based POC systems within the last 6 years with an emphasis on cell and biomolecular detection. These devices typically comprise multiple components, such as detectors, sample processors, disposable chips, batteries, and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. Researchers have demonstrated several promising approaches employing various detection schemes and device configurations, and it is expected that further developments in biosensors, battery technology and miniaturized electronics will enable smartphone-based POC technologies to become more mainstream tools in the scientific and biomedical communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Anderson, G. F., P. S. Hussey, B. K. Frogner, and H. R. Waters. Health spending in the United States and the rest of the industrialized world. Health Aff. (Millwood) 24:903–914, 2005.

    Article  Google Scholar 

  2. Anker, S. D., F. Koehler, and W. T. Abraham. Telemedicine and remote management of patients with heart failure. The Lancet 378:731–739, 2011.

    Article  Google Scholar 

  3. Auerbach, D. I., and A. L. Kellermann. A decade of health care cost growth has wiped out real income gains for an average US family. Health Aff. (Millwood) 30:1630–1636, 2011.

    Article  Google Scholar 

  4. Bishara, W., U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab. Chip 11:1276, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Braun, R. P., J. L. Vecchietti, L. Thomas, C. Prins, L. E. French, A. J. Gewirtzman, J.-H. Saurat, and D. Salomon. Telemedical wound care using a new generation of mobile telephones: a feasibility study. Arch. Dermatol. 141:254–258, 2005.

    PubMed  Google Scholar 

  6. Breslauer, D. N., R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher. Mobile Phone Based Clinical Microscopy for Global Health Applications. PLoS ONE 4:e6320, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng, X., A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner. Enhancing the performance of a point-of-care CD4 + T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics. Lab. Chip 9:1357–1364, 2009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Cheng, X., D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner. A microfluidic device for practical label-free CD4 + T cell counting of HIV-infected subjects. Lab. Chip 7:170, 2007.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Chin, C. D., V. Linder, and S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12:2118, 2012.

    Article  PubMed  CAS  Google Scholar 

  10. Coskun, A. F., R. Nagi, K. Sadeghi, S. Phillips, and A. Ozcan. Albumin testing in urine using a smart-phone. Lab. Chip 13:4231–4238, 2013.

    Article  PubMed  CAS  Google Scholar 

  11. Fang, X., Y. Liu, J. Kong, and X. Jiang. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82:3002–3006, 2010.

    Article  PubMed  CAS  Google Scholar 

  12. Filipovic, N., R. Stojanovic, M. Debevc, and G. Devedzic. On line ECG processing and visualization using android SmartPhone, 2013.doi:10.1109/MECO.2013.6601326.

  13. Fronczek, C. F., T. S. Park, D. K. Harshman, A. M. Nicolini, and J.-Y. Yoon. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 4:11103, 2014.

    Article  CAS  Google Scholar 

  14. Gallegos, D., K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham. Label-free biodetection using a smartphone. Lab. Chip 13:2124–2132, 2013.

    Article  PubMed  CAS  Google Scholar 

  15. Gerche, A. L., A. T. Burns, D. J. Mooney, W. J. Inder, A. J. Taylor, J. Bogaert, A. I. MacIsaac, H. Heidbüchel, and D. L. Prior. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 33:998–1006, 2012.

    Article  PubMed  Google Scholar 

  16. Gervais, L., N. de Rooij, and E. Delamarche. Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 23:H151–H176, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Giavazzi, F., M. Salina, E. Ceccarello, A. Ilacqua, F. Damin, L. Sola, M. Chiari, B. Chini, R. Cerbino, T. Bellini, and M. Buscaglia. A fast and simple label-free immunoassay based on a smartphone. Biosens. Bioelectron. 58:395–402, 2014.

    Article  PubMed  CAS  Google Scholar 

  18. Giordano, B. C., J. Ferrance, S. Swedberg, A. F. R. Hühmer, and J. P. Landers. Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal. Biochem. 291:124–132, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Global Mobile Statistics 2013, Part A: mobile subscribers; handset market share; mobile operators. http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a.

  20. Görlinger, K., D. Fries, D. Dirkmann, C. F. Weber, A. A. Hanke, and H. Schöchl. Reduction of Fresh Frozen Plasma Requirements by Perioperative Point-of-Care Coagulation Management with Early Calculated Goal-Directed Therapy. Transfus. Med. Hemotherapy 39:104–113, 2012.

    Article  Google Scholar 

  21. Goroso, D. G., R. R. da Silva, L. R. Battistella, M. Odstrcil, and M. Paolini. Monitoring heart rate variability online using e-health oriented 3G mobile telephone services. J. Phys. Conf. Ser. 477:012036, 2013.

    Article  Google Scholar 

  22. Han, J.-H., B. C. Heinze, and J.-Y. Yoon. Single cell level detection of Escherichia coli in microfluidic device. Biosens. Bioelectron. 23:1303–1306, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Haun, J. B., C. M. Castro, R. Wang, V. M. Peterson, B. S. Marinelli, H. Lee, and R. Weissleder. Micro-NMR for rapid molecular analysis of human tumor samples. Sci. Transl. Med. 3:71ra16, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jamal, S., and Y. K. Agrawal. Advances in microfluidics: lab-on-a-chip to point of care diagnostic devices. Adv. Sci. Eng. Med. 5:385–394, 2013.

    Article  CAS  Google Scholar 

  25. Jiang, J., X. Wang, R. Chao, Y. Ren, C. Hu, Z. Xu, and G. L. Liu. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sens. Actuators B Chem. 193:653–659, 2014.

    Article  CAS  Google Scholar 

  26. Jin, Z., Y. Sun, and A. C. Cheng. Predicting cardiovascular disease from real-time electrocardiographic monitoring: An adaptive machine learning approach on a cell phone. 2009. doi:10.1109/IEMBS.2009.5333610.

    Google Scholar 

  27. Kadlec, M. W., D. You, J. C. Liao, and P. K. Wong. A cell phone-based microphotometric system for rapid antimicrobial susceptibility testing. J. Lab. Autom. 19(3):258–266, 2013. doi:10.1177/2211068213491095.

    Article  PubMed  Google Scholar 

  28. Khandoker, A. H., J. Black, and M. Palaniswami. Smartphone-based low cost oximeter photoplethysmography, 2010. doi:10.1109/ICELCE.2010.5700773.

  29. Khandurina, J., T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 72:2995–3000, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, U., S. Ghanbari, A. Ravikumar, J. Seubert, and S. Figueira. Rapid, affordable, and point-of-care water monitoring via a microfluidic DNA sensor and a mobile interface for global health. IEEE J. Transl. Eng. Health Med. 1:1–7, 2013.

    Google Scholar 

  31. Kim, J., M. Johnson, P. Hill, and B. K. Gale. Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr. Biol. 1:574, 2009.

    Article  CAS  Google Scholar 

  32. Kirsch, J., C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42:8733–8768, 2013.

    Article  PubMed  CAS  Google Scholar 

  33. Krüger, J., K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien. Development of a microfluidic device for fluorescence activated cell sorting. J. Micromechanics Microengineering 12:486, 2002.

    Article  Google Scholar 

  34. Landers, K. A., M. J. Burger, M. A. Tebay, D. M. Purdie, B. Scells, H. Samaratunga, M. F. Lavin, and R. A. Gardiner. Use of multiple biomarkers for a molecular diagnosis of prostate cancer. Int. J. Cancer 114:950–956, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Lillehoj, P. B., M.-C. Huang, N. Truong, and C.-M. Ho. Rapid electrochemical detection on a mobile phone. Lab. Chip 13:2950–2955, 2013.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, J., M. Enzelberger, and S. Quake. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23:1531–1536, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Llovet, J. M., and J. Bruix. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48:1312–1327, 2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Market Research Report – point of care testing market to reach $25 billion by 2016. http://finance.yahoo.com/news/market-research-report-point-care-080800154.html.

  39. Martinez, A. W., S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80:3699–3707, 2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Minogue, T. D., P. A. Rachwal, A. T. Hall, J. W. Koehler, and S. A. Weller. Cross institute evaluations of inhibitor resistant PCR reagents for direct testing of aerosol and blood samples containing biological warfare agent (BWA) DNA. Appl. Environ. Microbiol., 2013. doi:10.1128/AEM.03478-13.

  41. Miranda, B. S., E. M. Linares, S. Thalhammer, and L. T. Kubota. Development of a disposable and highly sensitive paper-based immunosensor for early diagnosis of Asian soybean rust. Biosens. Bioelectron. 45:123–128, 2013.

    Article  PubMed  CAS  Google Scholar 

  42. Mothershed, E. A., and A. M. Whitney. Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin. Chim. Acta 363:206–220, 2006.

    Article  PubMed  CAS  Google Scholar 

  43. Mushlin, A. I., H. S. Ruchlin, and M. A. Callahan. Costeffectiveness of diagnostic tests. The Lancet 358:1353–1355, 2001.

    Article  CAS  Google Scholar 

  44. Navruz, I., A. F. Coskun, J. Wong, S. Mohammad, D. Tseng, R. Nagi, S. Phillips, and A. Ozcan. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab. Chip 13:4015–4023, 2013.

    Article  PubMed  CAS  Google Scholar 

  45. Niemz, A., T. M. Ferguson, and D. S. Boyle. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29:240–250, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Oncescu, V., D. O’Dell, and D. Erickson. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab. Chip 13:3232–3238, 2013.

    Article  PubMed  CAS  Google Scholar 

  47. Park, T. S., W. Li, K. E. McCracken, and J.-Y. Yoon. Smartphone quantifies Salmonella from paper microfluidics. Lab. Chip 13:4832–4840, 2013.

    Article  PubMed  CAS  Google Scholar 

  48. Petersen, C. L., T. P. Chen, J. M. Ansermino, and G. A. Dumont. Design and evaluation of a low-cost smartphone pulse oximeter. Sensors 13:16882–16893, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Price, C. W., D. C. Leslie, and J. P. Landers. Nucleic acid extraction techniques and application to the microchip. Lab. Chip 9:2484, 2009.

    Article  PubMed  CAS  Google Scholar 

  50. Ryuzakir, M., H. Nakamoto, S. Kinoshita, M. Sone, E. Nishida, H. Suzuki, and H. Itoh. 866 home blood pressure comparataive study between telmisartan plus hydrochlorothiazide vs. amlodipine using telemedicine blood pressure monitoring system. J. Hypertens. 30:e253, 2012.

    Article  Google Scholar 

  51. Shah, P., X. Zhu, and C. Li. Development of paper-based analytical kit for point-of-care testing. Expert Rev. Mol. Diagn. 13:83–91, 2013.

    Article  PubMed  CAS  Google Scholar 

  52. Sidransky, D. Nucleic acid-based methods for the detection of cancer. Science 278:1054–1058, 1997.

    Article  PubMed  CAS  Google Scholar 

  53. Soper, S. A., K. Brown, A. Ellington, B. Frazier, G. Garcia-Manero, V. Gau, S. I. Gutman, D. F. Hayes, B. Korte, J. L. Landers, D. Larson, F. Ligler, A. Majumdar, M. Mascini, D. Nolte, Z. Rosenzweig, J. Wang, and D. Wilson. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21:1932–1942, 2006.

    Article  PubMed  CAS  Google Scholar 

  54. Stedtfeld, R. D., D. M. Tourlousse, G. Seyrig, T. M. Stedtfeld, M. Kronlein, S. Price, F. Ahmad, E. Gulari, J. M. Tiedje, and S. A. Hashsham. Gene-Z: a device for point of care genetic testing using a smartphone. Lab. Chip 12:1454–1462, 2012.

    Article  PubMed  CAS  Google Scholar 

  55. Stemple, C. C., S. V. Angus, T. S. Park, and J.-Y. Yoon. Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood. J. Lab. Autom. 19:35–41, 2014.

    Article  PubMed  CAS  Google Scholar 

  56. Strommer, E., J. Kaartinen, J. Parkka, A. Ylisaukko-oja, and I. Korhonen. Application of near field communication for health monitoring in daily life. 2006. doi:10.1109/IEMBS.2006.260021.

    Google Scholar 

  57. Tachakra, S., X. H. Wang, R. S. H. Istepanian, and Y. H. Song. Mobile e-health: the unwired evolution of telemedicine. Telemed. J. E Health 9:247–257, 2003.

    Article  PubMed  Google Scholar 

  58. Tahat, A. A. Mobile personal electrocardiogram monitoring system and transmission using MMS, 2008. doi:10.1109/ICCDCS.2008.4542630.

  59. Thornton, C. R., and O. E. Wills. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit. Rev. Microbiol. 1–25, 2013. doi:10.3109/1040841X.2013.788995.

  60. Tomita, N., Y. Mori, H. Kanda, and T. Notomi. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3:877–882, 2008.

    Article  PubMed  CAS  Google Scholar 

  61. Tseng, D., O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan. Lensfree microscopy on a cellphone. Lab. Chip 10:1787–1792, 2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Vasudev, A., A. Kaushik, K. Jones, and S. Bhansali. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid. Nanofluidics 14:683–702, 2013.

    Article  CAS  Google Scholar 

  63. Von Lode, P. Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. Clin. Biochem. 38:591–606, 2005.

    Article  Google Scholar 

  64. Wei, Q., H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, Z. Göröcs, L. A. Bentolila, T–. T. Wu, R. Sun, and A. Ozcan. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155, 2013.

    Article  PubMed  CAS  Google Scholar 

  65. Wild, D. G. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques. Oxford: Newnes, 2013, 1038 pp.

  66. Wojtczak, J., and P. Bonadonna. Pocket mobile smartphone system for the point-of-care submandibular ultrasonography. Am. J. Emerg. Med. 31:573–577, 2013.

    Article  PubMed  Google Scholar 

  67. Wolcott, M. J. Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev. 5:370–386, 1992.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Woodward, B., R. S. H. Istepanian, and C. I. Richards. Design of a telemedicine system using a mobile telephone. IEEE Trans. Inf. Technol. Biomed. 5:13–15, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Worldwide Quarterly Mobile Phone Tracker, 2011. http://www.idc.com/.

  70. Zhang, R. Q., S. L. Liu, W. Zhao, W. P. Zhang, X. Yu, Y. Li, A. J. Li, D. W. Pang, and Z. L. Zhang. A simple point-of-care microfluidic immunomagnetic fluorescence assay for pathogens. Anal. Chem. 85:2645–2651, 2013.

    Article  PubMed  CAS  Google Scholar 

  71. Zhu, H., S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan. Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem. 83:6641–6647, 2011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Zhu, H., and A. Ozcan. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone. J. Vis. Exp. 2013. doi:10.3791/50451.

    Google Scholar 

  73. Zhu, H., I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan. Cost-effective and rapid blood analysis on a cell-phone. Lab. Chip 13:1282–1288, 2013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Zhu, H., U. Sikora, and A. Ozcan. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541–2544, 2012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Carley Henke for her assistance in reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Lillehoj.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lin, TY. & Lillehoj, P.B. Smartphones for Cell and Biomolecular Detection. Ann Biomed Eng 42, 2205–2217 (2014). https://doi.org/10.1007/s10439-014-1055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1055-z

Keywords

Navigation