Skip to main content
Log in

A Nanoengineered Embolic Agent for Precise Radiofrequency Ablation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of the work is to investigate whether the electromagnetic properties of multi-walled carbon nanotubes (MWCNT) in the presence of radiofrequency (RF) energy is (1) safe, and (2) improves the precision of the therapeutic efficiency of the RF-ablation (RFA) procedure. An in vitro phantom was created for evaluating temperature near RF treated nanotubes. For the in vivo study, three baboons and six pigs were submitted for RFA procedure in superior/inferior kidney poles embolized with a non-adherent, lipophilic embolic agent (marsembol) with or without MWCNT. Tissue damage in the surrounding kill zone was assayed through caspase-3 activation. The in vitro results showed marked heat increase only in the region of the nanotubes. In vivo, necrosis/ischemic damage resulted from RFA therapy alone, RFA plus marsembol only. In marsembol + MWCNT condition, dramatic disruption of cell membranes and sub-cellular organelles was found whereas the nuclear membranes and basal cell membranes remained largely intact. The marsembol vaporized under RFA and tissue fluid filled the space. This caused the MWCNT to cluster within the new aqueous environment. RFA plus marsembol + MWCNT created a well-defined demarcation between healthy and apoptotic cells as evidenced by a marked reduction of caspase-3 expression. By contrast, there was a much less defined ablation zone in the absence of MWCNT. In conclusion, the combination of RFA plus marsembol + MWCNT embolization delineated the kill zone in vitro and in vivo. We demonstrate that MWCNTs remain in the ablation region thus minimizing their migration to the systemic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahmed, M., C. L. Brace, F. T. Lee, and S. N. Goldberg. Principles of and advances in percutaneous ablation. Radiology 258:351–369, 2011.

    Article  PubMed  Google Scholar 

  2. Ahmed, M., Z. J. Liu, K. S. Afzal, D. Weeks, S. M. Lobo, J. B. Kruskal, R. E. Lenkinski, and S. N. Goldberg. Radiofrequency ablation: effect of surrounding tissue composition on coagulation necrosis in a canine tumor model. Radiology 230:761–767, 2004.

    Article  PubMed  Google Scholar 

  3. Ahmed, M., Z. J. Liu, A. N. Lukyanov, S. Signoretti, C. Horkan, W. L. Monsky, V. P. Torchilin, and S. N. Goldberg. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 235:469–477, 2005.

    Article  PubMed  Google Scholar 

  4. Altunrende, F., R. Autorino, S. Hillyer, B. Yang, H. Laydner, M. A. White, R. Khanna, W. Isac, G. Spana, R. J. Stein, G. P. Haber, C. M. O’Malley, E. M. Remer, and J. H. Kaouk. Image guided percutaneous probe ablation for renal tumors in 65 solitary kidneys: functional and oncological outcomes. J. Urol. 186:35–41, 2011.

    Article  PubMed  Google Scholar 

  5. Burke, A., X. F. Ding, R. Singh, R. A. Kraft, N. Levi-Polyachenko, M. N. Rylander, C. Szot, C. Buchanan, J. Whitney, J. Fisher, H. C. Hatcher, R. D’Agostino, N. D. Kock, P. M. Ajayan, D. L. Carroll, S. Akman, F. M. Torti, and S. V. Torti. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U.S.A. 106:12897–12902, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cheng, X., J. Zhong, J. Meng, M. Yang, F. Jia, Z. Xu, H. Kong, and H. Xu. Characterization of multiwalled carbon nanotubes dispersing in water and association with biological effects. J. Nanomater. 2011:1, 2011.

    Google Scholar 

  7. Cooperberg, M. R., C. J. Kane, K. Mallin, and P. R. Carroll. National trends in treatment of stage I renal cell carcinoma. J. Urol. 181:319, 2009.

    Article  Google Scholar 

  8. Cornelis, F., X. Buy, M. Andre, R. Oyen, J. Bouffard-Vercelli, A. Blandino, J. Auriol, J. M. Correas, A. Pluvinage, S. Freeman, S. B. Solomon, and N. Grenier. De novo renal tumors arising in kidney transplants: midterm outcome after percutaneous thermal ablation. Radiology 260:900–907, 2011.

    Article  PubMed  Google Scholar 

  9. Ding, X. F., R. Singh, A. Burke, H. Hatcher, J. Olson, R. A. Kraft, M. Schmid, D. Carroll, J. D. Bourland, S. Akman, F. M. Torti, and S. V. Torti. Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine 6:1341–1352, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Fraczek-Szczypta, A., E. Menaszek, and S. Blazewicz. Some observations on carbon nanotubes susceptibility to cell phagocytosis. J. Nanomater. 2011:473516, 2011.

    Article  CAS  Google Scholar 

  11. Gasser, M., B. Rothen-Rutishauser, H. F. Krug, P. Gehr, M. Nelle, B. Yan, and P. Wick. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J. Nanobiotechnol. 8:31, 2010.

    Article  CAS  Google Scholar 

  12. Gebauer, B., M. Werk, E. Lopez-Haenninen, R. Felix, and P. Althaus. Radiofrequency ablation in combination with embolization in metachronous recurrent renal cancer in solitary kidney after contralateral tumor nephrectomy. Cardiovasc. Intervent. Radiol. 30:644–649, 2007.

    Article  PubMed  Google Scholar 

  13. Gill, I. S., T. H. S. Hsu, R. L. Fox, A. Matamoros, C. D. Miller, R. F. LeVeen, M. T. Grune, G. T. Sung, and M. E. Fidler. Laparoscopic and percutaneous radiofrequency ablation of the kidney: acute and chronic porcine study. Urology 56:197–200, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Kang, D. C., D. A. Palmer, M. Zarei, P. Shah, C. Folsom, R. J. Beyth, T. L. Stoffs, M. M. Neuberger, and P. Dahm. A systematic review of the quality of evidence of ablative therapy for small renal masses. J. Urol. 187:44–47, 2012.

    Article  PubMed  Google Scholar 

  15. Krug, H. F., and P. Wick. Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. Engl. 50:1260–1278, 2011.

    Article  PubMed  CAS  Google Scholar 

  16. Lavoie, P., P. Metellus, L. Velly, V. Vidal, P. H. Rolland, M. Mekaouche, G. Dubreuil, and O. Levrier. Functional cerebral venous outflow in swine and baboon: feasibility of an intracranial venous hypertension model. J. Invest. Surg. 21:323–329, 2008.

    Article  PubMed  Google Scholar 

  17. Lee, S., and J. W. Peng. Effect of plasma treatment on electrical conductivity and Raman spectra of carbon nanotubes. J. Phys. Chem. Solids 72:1101–1103, 2011.

    Article  CAS  Google Scholar 

  18. Levrier, O., C. Mekkaoui, P. H. Rolland, K. Murphy, P. Cabrol, G. Moulin, J. M. Bartoli, and C. Raybaud. Efficacy and low vascular toxicity of embolization with radical versus anionic polymerization of n-butyl-2-cyanoacrylate (NBCA)—an experimental study in the swine. J. Neuroradiol. 30:95–102, 2003.

    PubMed  CAS  Google Scholar 

  19. Lewandowski, R. J., J. F. Geschwind, E. Liapi, and R. Salem. Transcatheter intraarterial therapies: rationale and overview. Radiology 259:641–657, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Madani, S. Y., A. Mandel, and A. M. Seifalian. A concise review of carbon nanotube’s toxicology. Nano Rev. 4:1–14, 2013.

    Google Scholar 

  21. Margulis, V., E. D. Matsumoto, G. Lindberg, L. Tunc, G. Taylor, A. I. Sagalowsky, and J. A. Cadeddu. Acute histologic effects on temperature-based radiofrequency ablation on renal tumor pathologic interpretation. Urology 64:660–663, 2004.

    Article  PubMed  Google Scholar 

  22. Matlaga, B. R., R. J. Zagoria, R. D. Woodruff, F. M. Torti, and M. C. Hall. Phase II trial of radio frequency ablation of renal cancer: evaluation of the kill zone. J. Urol. 168:2401–2405, 2002.

    Article  PubMed  Google Scholar 

  23. Matsumoto, E. D., L. Watumull, D. B. Johnson, K. Ogan, G. D. Taylor, S. Josephs, and J. A. Cadeddu. The radiographic evolution of radio frequency ablated renal tumors. J. Urol. 172:45–48, 2004.

    Article  PubMed  Google Scholar 

  24. Michaels, M. J., H. K. Rhee, A. P. Mourtzinos, I. C. Summerhayes, M. L. Silverman, and J. A. Libertino. Incomplete renal tumor destruction using radio frequency interstitial ablation. J. Urol. 168:2406–2409, 2002.

    Article  PubMed  Google Scholar 

  25. Murr, L. E., K. M. Garza, K. F. Soto, A. Carrasco, T. G. Powell, D. A. Ramirez, P. A. Guerrero, D. A. Lopez, and J. Venzor. Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int. J. Environ. Res. Public Health 2:31–42, 2005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Osmond-McLeod, M. J., C. A. Poland, F. Murphy, L. Waddington, H. Morris, S. C. Hawkins, S. Clark, R. Aitken, M. J. McCall, and K. Donaldson. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Part. Fibre Toxicol. 8:15, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Pacurari, M., V. Castranova, and V. Vallyathan. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J. Toxicol. Environ. Health A 73:378–395, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Pacurari, M., Y. Qian, D. Porter, M. Wolfarth, Y. Wan, D. Luo, M. Ding, V. Castranova, and N. Guo. Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol. Appl. Pharmacol. 255:18–31, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Polascik, T. J. Ablation of renal tumors in a rabbit model with interstitial saline-augmented radiofrequency energy—reply by the authors. Urology 54:382–383, 1999.

    Article  Google Scholar 

  30. Ravichandran, P., S. Baluchamy, B. Sadanandan, R. Gopikrishnan, S. Biradar, V. Ramesh, J. C. Hall, and G. T. Ramesh. Multiwalled carbon nanotubes activate NF-kappa B and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis 15:1507–1516, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Rendon, R. A., M. R. Gertner, M. D. Sherar, M. R. Asch, J. R. Kachura, J. Sweet, and M. A. S. Jewett. Development of a radiofrequency based thermal therapy technique in an in vivo porcine model for the treatment of small renal masses. J. Urol. 166:292–298, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Rendon, R. A., J. R. Kachura, J. M. Sweet, M. R. Gertner, M. D. Sherar, M. Robinette, J. Tsihlias, J. Trachtenberg, H. Sampson, and M. A. S. Jewett. The uncertainty of radio frequency treatment of renal cell carcinoma: findings at immediate and delayed nephrectomy. J. Urol. 167:1587–1592, 2002.

    Article  PubMed  Google Scholar 

  33. Rodemann, H. P., A. Binder, A. Burger, N. Guven, H. Loffler, and M. Bamberg. The underlying cellular mechanism of fibrosis. Kidney Int. Suppl. 54:S32–S36, 1996.

    PubMed  CAS  Google Scholar 

  34. Rolland, P. H., A. B. Charifi, C. Verrier, H. Bodard, A. Friggi, P. Piquet, G. Moulin, and J. M. Bartoli. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology 213:229–246, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Rolland, P. H., V. Vidal, C. Mekkaoui, M. F. Bertrand, O. Levrier, and J. M. Bartoli. Embolization-driven occlusion of the abdominal aortic aneurysmal sac as the basis of prevention of endoleaks in a new swine model. Eur. J. Vasc. Endovasc. Surg. 31:28–35, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Savolainen, K., L. Pylkkanen, H. Norppa, G. Falck, H. Lindberg, T. Tuomi, M. Vippola, H. Alenius, K. Hameri, J. Koivisto, D. Brouwer, D. Mark, D. Bard, M. Berges, E. Jankowska, M. Posniak, P. Farmer, R. Singh, F. Krombach, P. Bihari, G. Kasper, and M. Seipenbusch. Nanotechnologies, engineered nanomaterials and occupational health and safety—a review. Saf. Sci. 48:957–963, 2010.

    Article  Google Scholar 

  37. Shuba, M. V., G. Y. Slepyan, S. A. Maksimenko, and G. W. Hanson. Radiofrequency field absorption by carbon nanotubes embedded in a conductive host. J. Appl. Phys. 108:114302, 2010.

    Article  CAS  Google Scholar 

  38. Sohaebuddin, S. K., P. T. Thevenot, D. Baker, J. W. Eaton, and L. Tang. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7:22, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Sommer, C., N. Kortes, S. Zelzer, F. Arnegger, U. Stampfl, N. Bellemann, T. Gehrig, F. Nickel, H. Kenngott, C. Mogler, T. Longerich, H. Meinzer, G. Richter, H. Kauczor, and B. Radeleff. Renal artery embolization combined with radiofrequency ablation in a porcine kidney model: effect of small and narrowly calibrated microparticles as embolization material on coagulation diameter, volume, and shape. Cardiovasc. Intervent. Radiol. 34:156–165, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Terrones, M., P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, and H. Terrones. N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. A 74:355–361, 2002.

    Article  CAS  Google Scholar 

  41. Torti, S. V., F. Byrne, O. Whelan, N. Levi, B. Ucer, M. Schmid, F. M. Torti, S. Akman, J. Liu, P. M. Ajayan, O. Nalamasu, and D. L. Carroll. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int. J. Nanomed. 2:707–714, 2007.

    CAS  Google Scholar 

  42. Vidal, V., P. H. Rolland, L. Daniel, G. Moulin, J. M. Bartoli, and O. Levrier. Effectiveness of endovascular embolization with a collagen-based embolic agent (marsembol) in an animal model. J. Vasc. Interv. Radiol. 21:1419–1423, 2010.

    Article  PubMed  Google Scholar 

  43. Wang, L., V. Castranova, A. Mishra, B. Chen, R. R. Mercer, D. Schwegler-Berry, and Y. Rojanasakul. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part. Fibre Toxicol. 7:31, 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Wirnitzer, U., B. Herbold, M. Voetz, and J. Ragot. Studies on the in vitro genotoxicity of baytubes (R), agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol. Lett. 186:160–165, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Yang, C., V. Kaushal, S. V. Shah, and G. P. Kaushal. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 294:F777–F787, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel L. Berry.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland, P.H., Berry, J.L., Louis, G. et al. A Nanoengineered Embolic Agent for Precise Radiofrequency Ablation. Ann Biomed Eng 42, 940–949 (2014). https://doi.org/10.1007/s10439-014-0977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0977-9

Keywords

Navigation