Skip to main content

Advertisement

Log in

In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation (IRE) achieves targeted volume non-thermal focal ablation using a series of brief electric pulses to kill cells by disrupting membrane integrity. Electrochemotherapy (ECT) uses lower numbers of sub-lethal electric pulses to disrupt membranes for improved drug uptake. Malignant glioma (MG) brain tumors are difficult to treat due to diffuse peripheral margins into healthy neural tissue. Here, in vitro experimental data and numerical simulations investigate the feasibility for IRE-relevant pulse protocols with adjuvant ECT drugs to enhance MG treatment. Cytotoxicity curves were produced on two glioma cell lines in vitro at multiple pulse strengths and drug doses with Bleomycin or Carboplatin. Pulses alone increased cytotoxicity with higher pulse numbers and strengths, reaching >90% by 800 V/cm with 90 pulses. Chemotherapeutic addition increased cytotoxicity by >50% for 1 ng/mL concentrations of either drug relative to 80 pulses alone with J3T cells at electric fields ≥400 V/cm. In addition to necrosis, transmission electron microscopy visualizes apoptotic morphological changes and Hoescht 33342 staining shows apoptotic cell fractions varying with electric field and drug dose relative to controls. Numerically simulated treatment volumes in a canine brain show IRE combined with ECT expands therapeutic volume by 2.1–3.2 times compared to IRE alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

IRE:

Irreversible electroporation

ECT:

Electrochemotherapy

BBB:

Blood–brain-barrier

References

  1. Agerholm-Larsen, B., H. K. Iversen, P. Ibsen, J. M. Moller, F. Mahmood, et al. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res. 71:3753–3762, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, M., C. L. Brace, F. T. Lee, and S. N. Goldberg. Principles of and advances in percutaneous ablation. Radiology 258:351–369, 2011.

    Article  PubMed  Google Scholar 

  3. Al-Sakere, B., F. Andre, C. Bernat, E. Connault, P. Opolon, et al. Tumor ablation with irreversible electroporation. PLoS One 2:e1135, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Au, J. T., J. Wong, A. Mittra, S. Carpenter, D. Haddad, et al. Irreversible electroporation is a surgical ablation technique that enhances gene transfer. Surgery 150:474–479, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cheung, W., H. Kavnoudias, S. Roberts, B. Szkandera, W. Kemp, et al. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes. Technol. Cancer Res. Treat. 12:233–241, 2013.

    CAS  PubMed  Google Scholar 

  6. Davalos, R., L. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Duck, F. A. Physical properties of tissue: a comprehensive reference book. New York: Academic Press, 1990.

    Google Scholar 

  8. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.

    Article  PubMed  Google Scholar 

  9. Foster, K. R., and H. P. Schwan. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17:25–104, 1989.

    CAS  PubMed  Google Scholar 

  10. Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia, P. A., T. Pancotto, J. H. Rossmeisl, Jr., N. Henao-Guerrero, N. R. Gustafson, et al. Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol. Cancer Res. Treat. 10:73–83, 2011.

    CAS  PubMed  Google Scholar 

  12. Garcia, P., J. Rossmeisl, R. Neal, T. Ellis, J. Olson, et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, P. A., J. H. Rossmeisl, Jr., J. L. Robertson, J. D. Olson, A. J. Johnson, et al. 7.0-T magnetic resonance imaging characterization of acute blood–brain-barrier disruption achieved with intracranial irreversible electroporation. PLoS ONE 7:e50482, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Garrido, W., M. Munoz, R. San Martin, and C. Quezada. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1. Biochem. Biophys. Res. Commun. 411:62–68, 2011.

    Article  CAS  PubMed  Google Scholar 

  15. Heller, R., M. J. Jaroszeski, D. S. Reintgen, C. A. Puleo, R. C. DeConti, et al. Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 83:148–157, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Hjouj, M., D. Last, D. Guez, D. Daniels, S. Sharabi, et al. MRI study on reversible and irreversible electroporation induced blood–brain barrier disruption. PLoS ONE 7:e42817, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hochberg, F. H., and A. Pruitt. Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911, 1980.

    Article  CAS  PubMed  Google Scholar 

  18. Jarm, T., M. Cemazar, D. Miklavcic, and G. Sersa. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev. Anticancer Ther. 10:729–746, 2010.

    Article  PubMed  Google Scholar 

  19. Lee, E. W., C. T. Loh, and S. T. Kee. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol. Cancer Res. Treat. 6:287–293, 2007.

    PubMed  Google Scholar 

  20. Linnert, M., and J. Gehl. Bleomycin treatment of brain tumors: an evaluation. Anticancer Drugs 20:157–164, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochimica et Biophysica Acta 1523:73–83, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Mirimanoff, R. O., T. Gorlia, W. Mason, M. J. Van den Bent, R. D. Kortmann, et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J. Clin. Oncol. 24:2563–2569, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Neal, II, R. E., W. Cheung, H. Kavnoudias, and K. R. Thomson. Spectrum of imaging and characteristics for liver tumors treated with irreversible electroporation. J. Biomed. Sci. Eng. 5:813–818, 2012.

    Article  Google Scholar 

  26. Neal, II, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.

    Article  PubMed  Google Scholar 

  27. Neal, II, R. E., J. H. Rossmeisl, Jr., P. A. Garcia, O. I. Lanz, N. Henao-Guerrero, et al. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 29:e372–e377, 2011.

    Article  PubMed  Google Scholar 

  28. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.

    PubMed  Google Scholar 

  29. Prados, M. D., and V. Levin. Biology and treatment of malignant glioma. Semin. Oncol. 27:1–10, 2000.

    CAS  PubMed  Google Scholar 

  30. Qian, J., G. S. Feng, and T. Vogl. Combined interventional therapies of hepatocellular carcinoma. World J. Gastroenterol. 9:1885–1891, 2003.

    PubMed  Google Scholar 

  31. Roux, S., C. Bernat, B. Al-Sakere, F. Ghiringhelli, P. Opolon, et al. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol. Immunother. 57:1291–1300, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Rubinsky, J., G. Onik, P. Mikus, and B. Rubinsky. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol. 180:2668–2674, 2008.

    Article  PubMed  Google Scholar 

  33. Sabel, M. S. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 58:1–11, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Salford, L. G., B. R. Persson, A. Brun, C. P. Ceberg, P. C. Kongstad, et al. A new brain tumour therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Commun. 194:938–943, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Sersa, G., T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer. 98:388–398, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sersa, G., D. Miklavcic, M. Cemazar, Z. Rudolf, G. Pucihar, et al. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol. 34:232–240, 2008.

    Article  CAS  PubMed  Google Scholar 

  37. Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, et al. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.

    Article  PubMed  Google Scholar 

  38. Venkatesan, A. M., B. J. Wood, and D. A. Gervais. Percutaneous ablation in the kidney. Radiology 261:375–391, 2011.

    Article  PubMed  Google Scholar 

  39. Yordanova, Y. N., S. Moritz-Gasser, and H. Duffau. Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J. Neurosurg. 115:232–239, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Coulter Foundation, NSF CAREER Award CBET-1055913, and Whitaker International Scholars Program. The authors thank Kathy Lowe for assistance with cell morphology and histology work.

Conflict of Interest

REN, JHR, PAG, RVD, JLR: Patent holders of “Irreversible Electroporation to Treat Aberrant Masses,” and have pending patents in the area of irreversible electroporation in general, but which does not directly relate to the content submitted here. RVD provides minimal consulting and has received research funding in the area of numerical modeling of electric fields. This manuscript has not been previously published, in whole or in part, nor is it concurrently under consideration elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Neal II.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

R.E. Neal II and J.H. Rossmeisl Jr. have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, R.E., Rossmeisl, J.H., D’Alfonso, V. et al. In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment. Ann Biomed Eng 42, 475–487 (2014). https://doi.org/10.1007/s10439-013-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0923-2

Keywords

Navigation