Skip to main content
Log in

The Tendon Injury Response is Influenced by Decorin and Biglycan

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Defining the constituent regulatory molecules in tendon is critical to understanding the process of tendon repair and instructive to the development of novel treatment modalities. The purpose of this study is to define the structural, expressional, and mechanical changes in the tendon injury response, and elucidate the roles of two class I small leucine-rich proteoglycans (SLRPs). We utilized biglycan-null, decorin-null and wild type mice with an established patellar tendon injury model. Mechanical testing demonstrated functional changes associated with injury and the incomplete recapitulation of mechanical properties after 6 weeks. In addition, SLRP deficiency influenced the mechanical properties with a marked lack of improvement between 3 and 6 weeks in decorin-null tendons. Morphological analyses of the injury response and role of SLRPs demonstrated alterations in cell density and shape as well as collagen alignment and fibril structure resulting from injury. SLRP gene expression was studied using RT-qPCR with alterations in expression associated with the injured tendons. Our results show that in the absence of biglycan initial healing may be impaired while in the absence of decorin later healing is clearly diminished. This suggests that biglycan and decorin may have sequential roles in the tendon response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References.

  1. Ameye, L., D. Aria, K. Jepsen, A. Oldberg, T. Xu, and M. F. Young. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 6:673–680, 2002.

    Article  Google Scholar 

  2. Ansorge, H. L., S. Adams, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional, and structural properties of the post-natal mouse Achilles tendon. Ann. Biomed. Eng. 39:1904–1913, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ansorge, H. L., S. Adams, A. F. Jawad, D. E. Birk, and L. J. Soslowsky. Mechanical property changes during neonatal development and healing using a multiple regression model. J. Biomech. 45:1288–1292, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Berglund, M., C. Reno, D. A. Hart, and M. Wiig. Patterns of mRNA expression for matrix molecules and growth factors in flexor tendon injury: differences in the regulation between tendon and tendon sheath. J. Hand Surg. Am. 31:1279–1287, 2006.

    Article  PubMed  Google Scholar 

  5. Birk, D. E., and P. Bruckner. Collagen suprastructures. In: Topics in Current Chemistry: Collagen, edited by J. Brinckmann, P. K. Müller, and H. Notbohm. Berlin: Springer-Verlag, 247:185–205, 2005.

  6. Birk, D. E., M. V. Nurminskaya, and E. I. Zycband. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev. Dyn. 202:229–243, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Buckley, M. R., A. A. Dunkman, K. E. Reuther, A. Kumar, L. Pathmanathan, D. P. Beason, D. E. Birk, and L. J. Soslowsky. Validation of an empirical damage model for aging and in vivo injury of the murine patellar tendon. J. Biomech. Eng. 135:041005-1-7.

  8. Chen, S., and D. E. Birk. 2013 The regulatory roles of small leucine-rich proteoglycans in extracellular assembly. FEBS J. 2013: 10.1111/febs.12136.

  9. Connizzo, B. K., J. J. Sarver, D. E. Birk, and L. J. Soslowsky. Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J. Biomech. Eng. 135(2):021019, 2013.

    Article  PubMed  Google Scholar 

  10. Corsi, A., T. Xu, X. D. Chen, A. Boyde, J. Liang, M. Mankani, B. Sommer, R. V. Iozzo, I. Eichstetter, P. G. Robey, P. Bianco, and M. F. Young. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res. 17:1180–1189, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Dafforn, A., P. Chen, G. Deng, M. Herrler, D. Iglehart, S. Koritala, S. Lato, S. Pillarisetty, R. Purohit, M. Wang, S. Wang, and N. Kurn. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37:854–857, 2004.

    CAS  PubMed  Google Scholar 

  12. Dourte, L. M., L. Pathmanathan, A. F. Jawad, R. V. Iozzo, M. J. Mienaltowski, D. E. Birk, and L. J. Soslowsky. Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. J. Biomech. 134(3):031005, 2012.

    Article  Google Scholar 

  13. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, A. Kumar, D. P. Beason, L. Pathmanathan, L. D. E. Birk, and L. J. Soslowsky. 2013. Dynamic mechanical properties of tendon repair tissue are unaffected by aging. Trans. Orthop. Res. Soc. 38:614.

    Google Scholar 

  14. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, S. M. Adams, S. J. Thomas, L. Satchell, A. Kumar, L. Pathmanathan, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. Decorin expression is required for age-related changes in tendon structure and mechanical properties. Matrix Biol. 32:3–13, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ezura, Y., S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk. Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 151:779–788, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Favata, M. Scarless healing in the fetus: Implications and strategies for postnatal tendon repair. Dissertation available from ProQuest. Paper AAI3246156, 2006.

  17. Iozzo, R. V. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 274:18843–18846, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, A., A. A. Dunkman, M. R. Buckley, L. Pathmanathan, M. J. Mienaltowski, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. Tendon repair response to injury is affected by the absence of biglycan and decorin. Trans. Orthop. Res. Soc. 37:158, 2012.

    CAS  Google Scholar 

  19. Leadbetter, W. B. Cell-matrix response in tendon injury. Clin. Sports Med. 11:533–578, 1992.

    CAS  PubMed  Google Scholar 

  20. Lin, T. W., L. Cardenas, D. L. Glaser, and L. J. Soslowsky. Tendon healing in interleukin-4 and interleukin-6 knockout mice. J. Biomech. 39:61–69, 2006.

    Article  PubMed  Google Scholar 

  21. Lui, P. P., Y. C. Cheuk, Y. W. Lee, and K. M. Chan. Ectopic chondro-ossification and erroneous extracellular matrix deposition in a tendon window injury model. J. Orthop. Res. 301:37–46, 2012.

    Article  Google Scholar 

  22. Lujan, T. J., C. J. Underwood, N. T. Jacobs, and J. A. Weiss. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J. Appl. Physiol. 106:423–431, 2009.

    Article  PubMed  Google Scholar 

  23. Ramakers, C., J. M. Ruijter, R. H. Deprez, and A. F. Moorman. Assumption-free analysis of quantitative realtime polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66, 2003.

    Google Scholar 

  24. Reed, C. C., and R. V. Iozzo. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 19:249–255, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Rühland, C., E. Schönherr, H. Robenek, U. Hansen, R. V. Iozzo, P. Bruckner, and D. G. Seidler. The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBS J. 274:4246–4255, 2007.

    Article  PubMed  Google Scholar 

  26. Schefe, J. H., K. E. Lehmann, I. R. Buschmann, T. Unger, and H. Funke-Kaiser. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J. Mol. Med. 84:901–910, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Young, M. F., Y. Bi, L. Ameye, and X. D. Chen. Biglycan knockout mice: new models for musculoskeletal diseases. Glycoconj. J. 19:257–262, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, G., S. Chen, S. Goldoni, B. W. Calder, H. C. Simpson, R. T. Owens, D. J. McQuillan, M. F. Young, R. V. Iozzo, and D. E. Birk. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J. Biol. Chem. 284:8888–8897, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, G., Y. Ezura, I. Chervoneva, P. S. Robinson, D. P. Beason, E. T. Carine, L. J. Soslowsky, R. V. Iozzo, and D. E. Birk. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98:1436–1449, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, G., B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky, S. Chakravarti, and D. E. Birk. Development of tendon structure and function: regulation of collagen fibrillogenesis. J. Musculoskeletal. Neuronal. Interact. 5:5–21, 2005.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NIH Grant 5R01AR055543 and the Penn Center for Musculoskeletal Disorders (NIH, P30 AR050950). None of the authors have any conflicts of interest to report. We acknowledge Benjamin Freedman for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplementary material 1 (PDF 256 kb) S-Table 1. RT-qPCR: Mean Ct numbers and mean plate efficiencies, raw data

10439_2013_915_MOESM2_ESM.lnk

Supplementary material 2 (LNK 0 kb) S-Fig. 1. Mean dynamic modulus and mean tanδ for each genotype at each tested strain and frequency. Note the increasing spread between 3 weeks and 6 weeks in WT and Bgn −/− (but not Dcn /) as strain increases. Seemingly, remodeling is more influential at these higher strains. See Figs. 1 and 2 for representative error bars; Table 1 and Table 2 for statistics

10439_2013_915_MOESM3_ESM.lnk

Supplementary material 3 (LNK 0 kb) S-Fig. 2. Quasi-static properties from ramp to failure and p-values from t tests. (a) toe modulus. (b) linear modulus. (c) transition strain (d) transition stress

Supplementary material 4 (LNK 0 kb) S-Fig. 3. A prepared tendon undergoing mechanical testing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunkman, A.A., Buckley, M.R., Mienaltowski, M.J. et al. The Tendon Injury Response is Influenced by Decorin and Biglycan. Ann Biomed Eng 42, 619–630 (2014). https://doi.org/10.1007/s10439-013-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0915-2

Keywords

Navigation