Skip to main content
Log in

Fractal Fluctuations in Quiet Standing Predict the Use of Mechanical Information for Haptic Perception

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Movement science has traditionally understood high-dimensional fluctuations as either antithetical or irrelevant to low-dimensional control. However, fluctuations incident to changeful, sometimes unpredictable stimulation must somehow reshape low-dimensional aspects of control through perception. The movement system’s fluctuations may reflect cascade dynamics in which many-sized events interact nonlinearly across many scales. Cascades yield fractal fluctuations, and fractality of fluctuations may provide a window on the interactions across scale supporting perceptual processes. To test these ideas, we asked adult human participants to judge whole or partial length for unseen rods (with and without added masses). The participants’ only experience with the objects came from supporting them across their shoulders during quiet standing. First, the degree of fractal temporal correlations in trial-by-trial series of planar Euclidean displacements in center of pressure (COP) significantly improved prediction of subsequent trial-by-trial judgments, above and beyond prediction by traditional predictors of haptic perception and conventional measures of COP variability. Second, comparison with linear surrogate data indicated the presence of nonlinear interactions across scale in these time series. These results demonstrate that high-dimensional fluctuations may serve a crucial role in the cascade dynamics supporting apparently low-dimensional control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anastas, J. R., D. G. Stephen, and J. A. Dixon. The scaling behavior of hand motions reveals self-organization during an executive-function task. Phys. A 390:1539–1545, 2011.

    Article  CAS  Google Scholar 

  2. Berniker, M., A. Jarc, E. Bizzi, and M. C. Tresch. Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc. Nat. Acad. Sci. USA 106:7601–7606, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein, N. A. The Coordination and Regulation of Movements. Oxford: Pergamon Press, p. 196, 1967.

    Google Scholar 

  4. Bloch-Salisbury, E., P. Indic, F. Bednarek, and D. Paydarfar. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J. Appl. Physiol. 107:1017–1027, 2009.

    Article  PubMed  Google Scholar 

  5. Carello, C., M.-V. Santana, and G. Burton. Selective perception by dynamic touch. Percept. Psychophys. 58:1177–1190, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. Collins, J. J., T. T. Imhoff, and P. Grigg. Noise-enhanced tactile sensation. Nature 383:770, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Delignières, D., S. Ramdani, L. Lemoine, K. Torre, M. Fortes, and G. Ninot. Fractal analyses for “short” time series: a re-assessment of classical methods. J. Math. Psychol. 50:525–544, 2006.

    Article  Google Scholar 

  8. Dixon, J. A., J. G. Holden, D. Mirman, and D. G. Stephen. Multifractal dynamics in the emergence of cognitive structure. Topics Cogn. Sci. 4:94–102, 2012.

    Article  Google Scholar 

  9. Duarte, M., and V. M. Zatsiorsky. Long-range temporal correlations in human standing. Phys. Lett. A 283:124–128, 2001.

    Article  CAS  Google Scholar 

  10. Ihlen, E. A. F., and B. Vereijken. Interaction-dominant dynamics in human cognition: beyond 1/f α fluctuation. J. Exp. Psychol. Gen. 139:436–463, 2010.

    Article  PubMed  Google Scholar 

  11. Ivanov, P. Ch., L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, H. E. Stanley, and Z. R. Struzik. From 1/f noise to multifractal cascades in heartbeat dynamics. J. Nonlinear Sci. 11:641–652, 2001.

    Google Scholar 

  12. Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316:87–114, 2002.

    Article  Google Scholar 

  13. Kelty-Stephen, D. G., and J. A. Dixon. Temporal correlations in postural sway moderate effects of stochastic resonance on postural stability. Hum. Mov. Sci. (in press).

  14. Kuznetsov, N. A., and S. Wallot. Effects of accuracy feedback on fractal characteristics of time estimation. Front. Integr. Neurosci. 5:62, 2011.

    Article  PubMed  Google Scholar 

  15. McDonnell, M. D., and D. Abbott. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comp. Biol. 5:e1000348, 2009.

    Article  Google Scholar 

  16. Nozaki, D., J. J. Collins, and Y. Yamamoto. Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise. Phys. Rev. E 60:4637–4644, 1999.

    Article  CAS  Google Scholar 

  17. Palatinus, Zs., C. Carello, and M. T. Turvey. Principles of part-whole selective perception by dynamic touch extend to the body. J. Mot. Behav. 43:87–93, 2011.

    Article  PubMed  Google Scholar 

  18. Peng, C.-K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Peng, C.-K., J. E. Mietus, Y. Liu, C. Lee, J. M. Hausdorff, H. E. Stanley, A. L. Goldberger, and L. A. Lipsitz. Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng. 30:683–692, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Priplata, A. A., J. B. Niemi, J. D. Harry, L. A. Lipsitz, and J. J. Collins. Vibrating insoles and balance control in elderly people. Lancet 362:1123–1124, 2003.

    Article  PubMed  Google Scholar 

  21. Schreiber, T., and A. Schmitz. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77:635–638, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Singer, J. D., and J. B. Willett. Applied Longitudinal Data Analysis. New York: Oxford University Press, p. 644, 2003.

    Book  Google Scholar 

  23. Stephen, D. G., R. Arzamarski, and C. F. Michaels. The role of fractality in perceptual learning: exploration in dynamic touch. J. Exp. Psychol. Hum. Percept. Perform. 36:1161–1173, 2010.

    Article  PubMed  Google Scholar 

  24. Stephen, D. G., R. A. Boncoddo, J. S. Magnuson, and J. A. Dixon. The dynamics of insight: mathematical discovery as a phase transition. Mem. Cogn. 37:1132–1149, 2009.

    Article  Google Scholar 

  25. Stephen, D. G., and J. A. Dixon. Strong anticipation: multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solitons Fractals 44:160–168, 2011.

    Article  Google Scholar 

  26. Stephen, D. G., and A. Hajnal. Transfer of calibration between hand and foot: functional equivalence and fractal fluctuations. Attent. Percept. Psychophys. 73:1302–1328, 2011.

    Article  Google Scholar 

  27. Stephen, D. G., N. Stepp, J. A. Dixon, and M. T. Turvey. Strong anticipation: sensitivity to long-range correlations in synchronization behavior. Phys. A 387:5271–7278, 2008.

    Article  Google Scholar 

  28. Stephen, D. G., B. Wilcox, J. B. Niemi, J. D. Franz, D. C. Kerrigan, and S. E. D’Andrea. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait Posture 36:537–540, 2012.

    Article  PubMed  Google Scholar 

  29. Stoffregen, T. A., C.-M. Yang, and B. G. Bardy. Affordance judgments and nonlocomotory body movements. Ecol. Psychol. 17:75–104, 2005.

    Article  Google Scholar 

  30. Suki, B. Fluctuations and power laws in pulmonary physiology. Am. J. Respir. Crit. Care Med. 166:133–137, 2002.

    Article  PubMed  Google Scholar 

  31. Teich, M. C., C. Heneghan, S. B. Lowen, T. Ozaki, and E. Kaplan. Fractal character of the neural spike train in the visual system of the cat. J. Opt. Soc. Am. A 14:529–546, 1997.

    Article  CAS  Google Scholar 

  32. Turcotte, D. L., B. D. Malamud, F. Guzzetti, and P. Reichenbach. Self-organization, the cascade model, and natural hazards. Proc. Natl. Acad. Sci. 19:2463–2465, 2002.

    Article  Google Scholar 

  33. Turvey, M. T. Action and perception at the level of the synergies. Hum. Mov. Sci. 26:657–697, 2007.

    Article  PubMed  CAS  Google Scholar 

  34. Turvey, M. T., and C. Carello. Obtaining information by dynamic (effortful) touching. Phil. Trans. R. Soc. B 366:3123–3132, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, Y., J. Gao, J. C. Sanchez, J. C. Principe, and M. S. Okun. Multiplicative multifractal modeling of human neuronal activity. Phys. Lett. A 344:253–264, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. T. Turvey for helpful discussions, J. G. Holden and two anonymous reviewers for their helpful comments, and acknowledge NSF grant BCS-0925373 and the Wyss Institute for financial support.

Conflict of interest

The authors have no conflicts of interests related to and reap no financial benefits from presenting the work reported in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian G. Kelty-Stephen.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palatinus, Z., Dixon, J.A. & Kelty-Stephen, D.G. Fractal Fluctuations in Quiet Standing Predict the Use of Mechanical Information for Haptic Perception. Ann Biomed Eng 41, 1625–1634 (2013). https://doi.org/10.1007/s10439-012-0706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0706-1

Keywords

Navigation