Skip to main content
Log in

Transtibial Amputee Joint Motion has Increased Attractor Divergence During Walking Compared to Non-Amputee Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The amputation and subsequent prosthetic rehabilitation of a lower leg affects gait. Dynamical systems theory would predict the use of a prosthetic device should alter the functional attractor dynamics to which the system self-organizes. Therefore, the purpose of this study was to compare the largest Lyapunov exponent (a nonlinear tool for assessing attractor dynamics) for amputee gait compared to healthy non-amputee individuals. Fourteen unilateral, transtibial amputees and fourteen healthy, non-amputee individuals ambulated on a treadmill at preferred, self-selected walking speed. Our results showed that the sound hip (p = 0.013), sound knee (p = 0.05), and prosthetic ankle (p = 0.023) have significantly greater largest Lyapunov exponents than healthy non-amputees. Furthermore, the prosthetic ankle has a significantly greater (p = 0.0.17) largest Lyapunov exponent than the sound leg ankle. These findings indicate attractor states for amputee gait with increased divergence. The increased attractor divergence seems to coincide with decreased ability for motor control between the natural rhythms of the individual and those of the prosthetic device. Future work should consider the impact of different prostheses and rehabilitation on the attractor dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abarbanel, H. D. I. Analysis of Observed Chaotic Data. New York: Springer, 1996.

    Book  Google Scholar 

  2. Bruijn, S. M., D. J. Bregman, O. G. Meijer, P. J. Beek, and J. H. van Dieen. Maximum Lyapunov exponents as predictors of global gait stability: a modeling approach. Med. Eng. Phys. 34(4):428–436, 2011.

    Article  Google Scholar 

  3. Bruijn, S. M., O. G. Meijer, P. J. Beek, and J. H. van Dieen. The effects of arm swing on human gait stability. J. Exp. Biol. 213:3945–3952, 2010.

    Article  PubMed  Google Scholar 

  4. Bruijn, S. M., J. H. van Dieen, O. G. Meijer, and P. J. Beek. Is slow walking more stable? J. Biomech. 42:1506–1512, 2009.

    Article  PubMed  Google Scholar 

  5. Bruijn, S. M., J. H. van Dieen, O. G. Meijer, and P. J. Beek. Statistical precision and sensitivity of measures of dynamic gait stability. J. Neurosci. Methods 178:327–333, 2009.

    Article  PubMed  Google Scholar 

  6. Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. (Bristol, Avon.) 18:435–443, 2003.

    Google Scholar 

  7. Cignetti, F., L. M. Decker, and N. Stergiou. Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets. Ann. Biomed. Eng. 40(5):122–1130, 2011.

    Google Scholar 

  8. Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    Article  PubMed  Google Scholar 

  9. Eke-Okoro, S. T., L. E. Larsson, and B. Sandlund. Simulation of paretic gait in normal subjects by loading the ankles. Scand. J. Rehabil. Med. 17:147–150, 1985.

    PubMed  CAS  Google Scholar 

  10. England, S. A., and K. P. Granata. The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178, 2007.

    Article  PubMed  Google Scholar 

  11. Ferris, D. P., and C. L. Lewis. Robotic lower limb exoskeletons using proportional myoelectric control. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:2119–2124, 2009.

    PubMed  Google Scholar 

  12. Glazier, P. S., K. Davids, and R. M. Bartlett. Dynamical Systems Theory: a relevant framework for performance-oriented sports biomechanics research. Sportscience 7, 2003. (http://www.sportsci.org/).

  13. Granata, K. P., and T. E. Lockhart. Dynamic stability differences in fall-prone and healthy adults. J. Electromyogr. Kinesiol. 18:172–178, 2008.

    Article  PubMed  Google Scholar 

  14. Higgins, J. R. Human Movement: An Integrated Approach. St. Louis: Mosby, 1977.

    Google Scholar 

  15. Jordan, K., and K. M. Newell. The structure of variability in human walking and running is speed-dependent. Exerc. Sport Sci. Rev. 36:200–204, 2008.

    Article  PubMed  Google Scholar 

  16. Kao, P. C., and D. P. Ferris. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture 29:230–236, 2009.

    Article  PubMed  Google Scholar 

  17. Kurz, M. J., T. N. Judkins, C. Arellano, and M. Scott-Pandorf. A passive dynamic walking robot that has a deterministic nonlinear gait. J. Biomech. 41:1310–1316, 2008.

    Article  PubMed  Google Scholar 

  18. Kurz, M. J., K. Markopoulou, and N. Stergiou. Attractor divergence as a metric for assessing walking balance. Nonlinear Dyn. Psychol. Life. Sci. 14:151–164, 2010.

    Google Scholar 

  19. Kurz, M. J., and N. Stergiou. Do horizontal propulsive forces influence the nonlinear structure of locomotion? J. Neuroeng Rehabil. 4:30, 2007.

    Article  PubMed  Google Scholar 

  20. Kyvelidou, A., M. J. Kurz, J. L. Ehlers, and N. Stergiou. Aging and partial body weight support affects gait variability. J. Neuroeng Rehabil. 5:22, 2008.

    Article  PubMed  Google Scholar 

  21. Lamoth, C. J., E. Ainsworth, W. Polomski, and H. Houdijk. Variability and stability analysis of walking of transfemoral amputees. Med. Eng. Phys. 32:1009–1014, 2010.

    Article  PubMed  Google Scholar 

  22. Lockhart, T. E., and J. Liu. Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics 51:1860–1872, 2008.

    Article  PubMed  Google Scholar 

  23. Miller, W. C., M. Speechley, and B. Deathe. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch. Phys. Med. Rehabil. 82:1031–1037, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Milnor, J. On the concept of attractor. Commun. Math. Phys. 99:177–195, 1985.

    Article  Google Scholar 

  25. Moraiti, C. O., N. Stergiou, H. S. Vasiliadis, E. Motsis, and A. Georgoulis. Anterior cruciate ligament reconstruction results in alterations in gait variability. Gait Posture 32:169–175, 2010.

    Article  PubMed  Google Scholar 

  26. Mukherjee, M., K. C. Siu, D. Katsavelis, P. Fayad, and N. Stergiou. The influence of visual perception of self-motion on locomotor adaptation to unilateral limb loading. J. Mot. Behav. 43:101–111, 2011.

    Article  PubMed  Google Scholar 

  27. Myers, S. A., J. M. Johanning, N. Stergiou, R. I. Celis, L. Robinson, and I. I. Pipinos. Gait variability is altered in patients with peripheral arterial disease. J. Vasc. Surg. 49:924.e1–931.e1, 2009.

    Google Scholar 

  28. Powers, C. M., L. Torburn, J. Perry, and E. Ayyappa. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch. Phys. Med. Rehabil. 75:825–829, 1994.

    PubMed  CAS  Google Scholar 

  29. Sagawa, Jr., Y., K. Turcot, S. Armand, A. Thevenon, N. Vuillerme, and E. Watelain. Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 33:511–526, 2011.

    Article  PubMed  Google Scholar 

  30. Smith, J. D., and P. E. Martin. Walking patterns change rapidly following asymmetrical lower extremity loading. Hum. Mov. Sci. 26:412–425, 2007.

    Article  PubMed  Google Scholar 

  31. Sprott, J., and G. Rowlands. Chaos Data Analyzer: The Professional Version. Raleigh, NC: Physics Academic Software, 1995.

  32. Stergiou, N., U. H. Buzzi, M. J. Kurz, and J. Heidel. Nonlinear tools in human movement. In: Innovative Analyses of Human Movement, edited by N. Stergiou. Champaign, IL: Human Kinetics, 2003, pp. 63–90.

    Google Scholar 

  33. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30:869–888, 2011.

    Article  PubMed  Google Scholar 

  34. Stergiou, N., R. Harbourne, and J. Cavanaugh. Optimal Movement Variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30:120–129, 2006.

    PubMed  Google Scholar 

  35. Thelen, E., and E. Bates. Connectionism and dynamic systems: are they really different? Dev. Sci. 6:378–391, 2003.

    Article  Google Scholar 

  36. Torburn, L., C. M. Powers, R. Guiterrez, and J. Perry. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J. Rehabil. Res. Dev. 32:111–119, 1995.

    PubMed  CAS  Google Scholar 

  37. Turvey, M. T. Coordination. Am. Psychol. 45:938–953, 1991.

    Article  Google Scholar 

  38. Vaughan, C. L., B. L. Davis, and J. C. O’Connor. Dynamics of Human Gait. Champaign, IL: Human Kinetics Publishers, 1992.

    Google Scholar 

  39. Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D 16:285–317, 1985.

    Article  Google Scholar 

  40. Wurdeman, S. R., S. A. Myers, A. L. Jacobsen, and N. Stergiou. Prosthesis preference is related to stride-to-stride fluctuations at the prosthetic ankle. J. Rehabil. Res. Dev., 2012 (Accepted).

Download references

Acknowledgments

This work was supported in part by an American Society of Biomechanics Grant-in-Aid award, National Institute on Aging R01 Research Award, the Nebraska Research Initiative, a Widaman Fellowship, and The Ohio Willow Wood Company.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurdeman, S.R., Myers, S.A. & Stergiou, N. Transtibial Amputee Joint Motion has Increased Attractor Divergence During Walking Compared to Non-Amputee Gait. Ann Biomed Eng 41, 806–813 (2013). https://doi.org/10.1007/s10439-012-0705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0705-2

Keywords

Navigation