Skip to main content
Log in

Linking the Development of Ventilator-Induced Injury to Mechanical Function in the Lung

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Management of ALI/ARDS involves supportive ventilation at low tidal volumes (V t) to minimize the rate at which ventilator induced lung injury (VILI) develops while the lungs heal. However, we currently have few details to guide the minimization of VILI in the ALI/ARDS patient. The goal of the present study was to determine how VILI progresses with time as a function of the manner in which the lung is ventilated in mice. We found that the progression of VILI caused by over-ventilating the lung at a positive end-expiratory pressure of zero is accompanied by progressive increases in lung stiffness as well as the rate at which the lung derecruits over time. We were able to accurately recapitulate these findings in a computational model that attributes changes in the dynamics of recruitment and derecruitment to two populations of lung units. One population closes over a time scale of minutes following a recruitment maneuver and the second closes in a matter of seconds or less, with the relative sizes of the two populations changing as VILI develops. This computational model serves as a basis from which to link the progression of VILI to changes in lung mechanical function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000.

    Google Scholar 

  2. Albert, S. P., J. DiRocco, G. B. Allen, J. H. T. Bates, R. Lafollette, B. D. Kubiak, J. Fischer, S. Maroney, and G. F. Nieman. The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106:757–765, 2009.

    Article  PubMed  Google Scholar 

  3. Allen, G., and J. H. Bates. Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J. Appl. Physiol. 96:293–300, 2004.

    Article  PubMed  Google Scholar 

  4. Allen, G., L. K. Lundblad, P. Parsons, and J. H. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.

    PubMed  Google Scholar 

  5. Allen, G. B., T. Leclair, M. Cloutier, J. Thompson-Figueroa, and J. H. Bates. The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L1580–L1589, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Bates, J. H. T. Lung Mechanics. An Inverse Modeling Approach. Cambridge: Cambridge University Press, 2009.

    Book  Google Scholar 

  7. Bates, J. H. T., and C. G. Irvin. Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93:705–713, 2002.

    PubMed  Google Scholar 

  8. Cassidy, K. J., D. Halpern, B. G. Ressler, and J. B. Grotberg. Surfactant effects in model airway closure experiments. J. Appl. Physiol. 87:415–427, 1999.

    PubMed  CAS  Google Scholar 

  9. Crotti, S., D. Mascheroni, P. Caironi, P. Pelosi, G. Ronzoni, M. Mondino, J. J. Marini, and L. Gattinoni. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am. J. Respir. Crit. Care Med. 164:131–140, 2001.

    PubMed  CAS  Google Scholar 

  10. Fuchimukai, T., T. Fujiwara, A. Takahashi, and G. Enhorning. Artificial pulmonary surfactant inhibited by proteins. J. Appl. Physiol. 62:429–437, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Fujioka, H., and J. B. Grotberg. Steady propagation of a liquid plug in a 2D-channel. J. Biomech. Eng. 126:567–577, 2004.

    Article  PubMed  Google Scholar 

  12. Fujioka, H., and J. B. Grotberg. Steady propagation of a surfactant laden liquid plug in a 2D-channel. Phys. Fluids 17:Art. No. 082102, 2005.

  13. Gaver, III, D. P., D. Halpern, O. E. Jensen, and J. B. Grotberg. The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319:25–65, 1996.

    Article  Google Scholar 

  14. Gaver, III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.

    PubMed  Google Scholar 

  15. Halpern, D., and J. B. Grotberg. Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244:615–632, 1993.

    Article  Google Scholar 

  16. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 72:168–178, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Heil, M. Airway closure: occluding liquid bridges in strongly buckled elastic tubes. J. Biomech. Eng. 121:487–493, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Holm, B. A., and R. H. Notter. Effects of hemoglobin and cell-membrane lipids on pulmonary surfactant activity. J. Appl. Physiol. 63:1434–1442, 1987.

    PubMed  CAS  Google Scholar 

  19. Holm, B. A., R. H. Notter, and J. N. Finkelstein. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem. Phys. Lipids 38:287–298, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Howell, P. D., S. L. Waters, and J. B. Grotberg. The propagation of a liquid bolus along a liquid-lined flexible tube. J. Fluid Mech. 406:309–335, 2000.

    Article  Google Scholar 

  21. Ma, B., and J. H. T. Bates. Modeling the complex dynamics of derecruitment in the lung. Ann. Biomed. Eng. 38:3466–3477, 2010.

    Article  PubMed  Google Scholar 

  22. Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.

    Article  PubMed  Google Scholar 

  23. Matthay, M. A., S. Bhattacharya, D. Gaver, L. B. Ware, L. H. Lim, O. Syrkina, F. Eyal, and R. Hubmayr. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L678–L682, 2002.

    PubMed  CAS  Google Scholar 

  24. Matthay, M. A., L. B. Ware, and G. A. Zimmerman. The acute respiratory distress syndrome. J. Clin. Investig. 122:2731–2740, 2012.

    Article  PubMed  CAS  Google Scholar 

  25. Naureckas, E. T., C. A. Dawson, B. S. Gerber, D. P. Gaver, III, H. L. Gerber, J. H. Linehan, J. Solway, and R. W. Samsel. Airway reopening pressure in isolated rat lungs. J. Appl. Physiol. 75:1323–1333, 1994.

    Google Scholar 

  26. Nelder, J. A., and R. Mead. A simplex method for function minimization. Comput. J. 7:308–313, 1965.

    Article  Google Scholar 

  27. Pavone, L., S. Albert, J. DiRocco, L. Gatto, and G. Nieman. Alveolar instability caused by mechanical ventilation initially damages the nondependent normal lung. Crit. Care 11:R104, 2007.

    Article  PubMed  Google Scholar 

  28. Pavone, L. A., S. Albert, D. Carney, L. A. Gatto, J. M. Halter, and G. F. Nieman. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics. Crit. Care 11:1–9, 2007.

    Google Scholar 

  29. Pelosi, P., M. Goldner, A. McKibben, A. Adams, G. Eccher, P. Caironi, S. Losappio, L. Gattinoni, and J. J. Marini. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am. J. Respir. Crit. Care 164:122–130, 2001.

    CAS  Google Scholar 

  30. Perun, M. L., and D. P. Gaver III. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Perun, M. L., and D. P. Gaver III. The interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Physiol. 75:1717–1728, 1995.

    Google Scholar 

  32. Salazar, E., and J. H. Knowles. An analysis of pressure-volume characteristics of the lungs. J. Appl. Physiol. 19:97–104, 1964.

    PubMed  CAS  Google Scholar 

  33. Schuessler, T. F., and J. H. Bates. A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans. Biomed. Eng. 42:860–866, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Seah, A. S., K. A. Grant, M. Aliyeva, G. B. Allen, and J. H. T. Bates. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39:1505–1516, 2011.

    Article  PubMed  Google Scholar 

  35. Seeger, W., G. Stohr, H. R. D. Wolf, and H. Neuhof. Alteration of surfactant function due to protein leakage—special interaction with fibrin monomer. J. Appl. Physiol. 58:326–338, 1985.

    PubMed  CAS  Google Scholar 

  36. Smith, B. J., E. Yamaguchi, and D. P. Gaver III. A translating stage system for μ-PIV measurements surrounding the tip of a migrating semi-infinite bubble. Meas. Sci. Technol. 21:015401, 2010.

    Article  PubMed  Google Scholar 

  37. Zheng, Y., J. C. Anderson, V. Suresh, and J. B. Grotberg. Effect of gravity on liquid plug transport through an airway bifurcation model. J. Biomech. Eng. Trans. ASME 127:798–806, 2005.

    Article  CAS  Google Scholar 

  38. Zheng, Y., H. Fujioka, J. C. Grotberg, and J. B. Grotberg. Effects of inertia and gravity on liquid plug splitting at a bifurcation. J. Biomech. Eng. 128:707–716, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants P30 GM103532 and T32 HL076122. Computational resources were provided by the Vermont Advanced Computing Core which is supported by NASA NNX-08AO96G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. T. Bates.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.J., Grant, K.A. & Bates, J.H.T. Linking the Development of Ventilator-Induced Injury to Mechanical Function in the Lung. Ann Biomed Eng 41, 527–536 (2013). https://doi.org/10.1007/s10439-012-0693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0693-2

Keywords

Navigation