Skip to main content

Advertisement

Log in

Novel Approach to Segment the Inner and Outer Boundaries of the Bladder Wall in T2-Weighted Magnetic Resonance Images

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Diagnosis of bladder-related conditions needs critical measurements which require the segmentation of the inner and outer boundaries of the bladder wall. In T2-weighted MR images, the low-signal intensity bladder wall can be identified due to the large contrast with the high-signal intensity urine and perivesical fat. In this article, two deformable models are proposed to segment the bladder wall. Based on the imaging features of the bladder, a modified geodesic active contour is proposed to segment the inner boundary. This method uses the statistical information of the bladder lumen and can handle the intensity variation in MR images. Having obtained the inner boundary, a shape influence field is formed and integrated with the Chan–Vese (C–V) model to segment the outer boundary. The shape-guided C–V model can prevent the overlapping between the two boundaries when the appearance of the bladder wall is blurred. Segmentation examples are presented and analyzed to demonstrate the effectiveness of this novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adalsteinsson, D., and J. A. Sethian. A fast level set method for propagating interfaces. J. Comput. Phys. 118:269–277, 1995.

    Article  Google Scholar 

  2. Barentsz, J. O., M. R. Engelbrecht, J. A. Witjes, J. J. de la Rosette, and M. van der Graaf. MR imaging of the male pelvis. Eur. Radiol. 9:1722–1736, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Barentsz, J. O., G. J. Jager, J. A. Witjes, and J. H. J. Ruijs. Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT. Eur. Radiol. 6:129–133, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Caselles, V., R. Kimmel, and G. Sapiro. Geodesic active contours. Int. J. Comput. Vis. 22:61–79, 1997.

    Article  Google Scholar 

  5. Chan, T. F., and L. A. Vese. Active contour without edges. IEEE Trans. Image Process. 10:266–277, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Cheng, D., and C. M. C. Tempany. MR imaging of the prostate and bladder. Semin. Ultrasound CT MRI 19:67–89, 1998.

    Article  CAS  Google Scholar 

  7. Dimopoulos, J., G. Schirl, A. Baldinger, T. H. Helbich, and R. Pötter. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol. 185:282–287, 2009.

    Article  PubMed  Google Scholar 

  8. Gomes, J., and O. Faugeras. Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11:209–223, 2000.

    Article  Google Scholar 

  9. Jaume, S., M. Ferrant, B. Macq, L. Hoyte, J. R. Fielding, A. Schreyer, R. Kikinis, and S. K. Warfield. Tumor detection in the bladder wall with a measurement of abnormal thickness in CT scans. IEEE Trans. Bio-Med. Eng. 50:383–390, 2003.

    Article  Google Scholar 

  10. Jequier, S., and O. Rousseau. Sonographic measurements of the normal bladder wall in children. Am. J. Roentgenol. 149:563–566, 1987.

    CAS  Google Scholar 

  11. Lammle, M., A. Beer, M. Settles, C. Hannig, H. Schwaibold, and C. Drews. Reliability of MR imaging-based virtual cystoscopy in the diagnosis of cancer of the urinary bladder. Am. J. Roentgenol. 178:1483–1488, 2002.

    Google Scholar 

  12. Leventon, M. E., W. E. L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, South Carolina, 2000, pp. 316–323.

  13. Ma, Z., R. N. M. Jorge, and J. M. R. S. Tavares. A shape guided C–V model to segment the levator ani muscle in axial magnetic resonance images. Med. Eng. Phys. 32:766–774, 2010.

    Article  PubMed  Google Scholar 

  14. Ma, Z., J. M. R. S. Tavares, R. N. M. Jorge, and T. Mascarenhas. A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput. Methods Biomech. Biomed. 13:235–246, 2010.

    Article  Google Scholar 

  15. Margot, S. D., and L. L. Steven. The effect of urinary bladder shape on its mechanics during filling. J. Biomech. 28:725–732, 1995.

    Article  Google Scholar 

  16. Nicolas, V., and D. Beyersdorff. The urinary bladder. In: MR Imaging of the Abdomen and Pelvis, edited by B. Hamm, G. P. Krestin, M. Laniado, V. Nicolas, and M. Taupitz. New York: Georg Thieme Verlag, 2010, pp. 209–217.

    Google Scholar 

  17. Osher, S., and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79:12–49, 1988.

    Article  Google Scholar 

  18. Paramasivam, S., A. Proietto, and M. Puvaneswary. Pelvic anatomy and MRI. Best Pract. Res. Clin. Obstet. 20:3–22, 2006.

    Article  CAS  Google Scholar 

  19. Song, J. H., I. R. Francis, J. F. Platt, R. H. Cohan, J. Mohsin, S. J. Kielb, M. Korobkin, and J. E. Montie. Bladder tumor detection at virtual cystoscopy. Radiology 218:95–100, 2001.

    PubMed  CAS  Google Scholar 

  20. Tekes, A., I. Kamel, K. Imam, G. Szarf, M. Schoenberg, K. Nasir, R. Thompson, and D. Bluemke. Dynamic MRI of bladder cancer: evaluation of staging accuracy. Am. J. Roentgenol. 184:121–127, 2005.

    Google Scholar 

  21. Vining, D. J., R. J. Zagoria, K. Liu, and D. Stelts. CT cystoscopy: an innovation in bladder imaging. Am. J. Roentgenol. 166:409–410, 1996.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially done in the scope of the projects “Methodologies to Analyze Organs from Complex Medical Images—Applications to Female Pelvic Cavity,” “Aberrant Crypt Foci and Human Colorectal Polyps: Mathematical Modeling and Endoscopic Image Processing,” and “Cardiovascular Imaging Modeling and Simulation—SIMCARD,” with references PTDC/EEA-CRO/103320/2008, UTAustin/MAT/0009/2008, and UTAustin/CA/0047/2008, respectively, financially supported by FCT—Fundação para a Ciência e a Tecnologia, in Portugal. The first author would like to thank FCT for his PhD grant with reference SFRH/BD/43768/2008.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares.

Additional information

Associate Editor Jing Bai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Jorge, R.N., Mascarenhas, T. et al. Novel Approach to Segment the Inner and Outer Boundaries of the Bladder Wall in T2-Weighted Magnetic Resonance Images. Ann Biomed Eng 39, 2287–2297 (2011). https://doi.org/10.1007/s10439-011-0324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0324-3

Keywords

Navigation