Skip to main content

Advertisement

Log in

3D Shape Analysis of Intracranial Aneurysms Using the Writhe Number as a Discriminant for Rupture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intracranial aneurysms are polymorphic focal arterial dilations, which harbor a variable risk of rupture leading to high morbidity and mortality. Increased detection of incidental aneurysms by non-invasive imaging has created a need for rupture risk stratification tools, in addition to simple aneurysm size, to guide optimal treatment strategy. To this end, shape analysis has emerged as a possible differentiator of rupture likelihood. A novel set of morphological parameters based on the writhe number are introduced here to describe aneurysms and discriminate rupture status. Classification in 117 saccular aneurysms (52 ruptured and 65 unruptured) is based on statistical analysis of writhe number distribution on the aneurysm surface. Aneurysms are analyzed both in isolation and including a portion of their parent vessel. Sidewall and bifurcation aneurysm subtypes were found to be best described by disjoint sets of shape parameters, yielding a morphological dichotomy between the two aneurysm classes. Writhe number analysis results in 86.7% accuracy on sidewall (SW) aneurysms and 71.2% accuracy on bifurcation (BF) aneurysms. This represents a 12% accuracy increase for both subtypes compared to the performance of seven established 2D and 3D indexes. The results support the utility of writhe number aneurysm shape analysis, with potential clinical value in rupture risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Beer, F. P., E. R. Johnston Jr., E. R. Eisenberg, and G. H. Staab. Vector Mechanics for Engineers: Statics. Ohio: McGraw-Hill Science, 2003.

    Google Scholar 

  2. Bowman, A. W. and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press, 1997.

    Google Scholar 

  3. Coert, B. A., S. D. Chang, H. M. Do, M. P. Marks, and G. K. Steinberg. Surgical and endovascular management of symptomatic posterior circulation fusiform aneurysms. J. Neurosurg. 106:855–865, 2007.

    Article  PubMed  Google Scholar 

  4. Dhar, S., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins, and H. Meng. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63(2):185–197, 2008.

    Article  PubMed  Google Scholar 

  5. Ford, M. D., Y. Hoi, M. Piccinelli, L. Antiga, and D. A. Steinman. An objective approach to digital removal of saccular aneurysms: technique and applications. Br. J. Radiol. 82:55–61, 2009.

    Article  Google Scholar 

  6. Fuller, F. B. The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68(4):815–819, 1971.

    Article  PubMed  CAS  Google Scholar 

  7. Hardle, W. Applied Nonparametric Regression. Cambridge: Cambridge University Press, 1990.

    Google Scholar 

  8. Harrell, F. E. Regression Modeling Strategies. Springer Series in Statistics, 2001.

  9. Hoh, B. L., C. L. Sistrom, C. S. Firment, G. L. Fautheree, G. J. Velat, J. H. Whiting, J. F. Reavey-Cantwell, and S. B. Lewis. Bottleneck factor and height–width ratio: association with ruptured aneurysms in patients with multiple cerebral aneurysms. Neurosurgery 61(4):716–723, 2007.

    Article  PubMed  Google Scholar 

  10. Hurdal, M. K., J. B. Gutierrez, C. Laing, and D. A. Smith. Shape analysis for automated sulcal classification and parcellation of MRI data. J. Comb. Optim. 15(3):257–275, 2008.

    Article  Google Scholar 

  11. Lauric, A., E. Miller, S. Frisken, and A. M. Malek. Automated detection of intracranial aneurysms based on parent vessel 3D analysis. Med. Imaging Anal. 14:149–159, 2010.

    Article  Google Scholar 

  12. Ma, B. S., R. E. Harbaugh, and M. L. Raghavan. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32(2)264–273, 2004.

    Article  PubMed  Google Scholar 

  13. Millan, R. D., L. Dempere-Marco, J. M. Pozo, J. R. Cebral, and A. F. Frangi. Morphological characterization of intracranial aneurysms using 3-d moment invariants. IEEE Trans. Med. Imaging 26(9):1270–1282, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Millington, I. Game Physics Engine Development. Menlo Park: Morgan Kaufmann, 2007.

    Google Scholar 

  15. Pham, D. L., C. Xu, and J. L. Prince. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Raghavan, M. L., B. Ma, and R. E. Harbaugh. Quantified aneurysm shape and rupture risk. J. Neurosurg. 102(2):355–362, 2005.

    Article  PubMed  Google Scholar 

  17. Rohde, S., K. Lahmann, J. Beck, R. Nafe, B. Yan, A. Raabe, and J. Berkefeld. Fourier analysis of intracranial aneurysms: towards an objective and quantitative evaluation of the shape of aneurysms. Neuroradiology 47(2):121–126, 2005.

    Article  PubMed  Google Scholar 

  18. Rossetto, V. and A. C. Maggs. Writhing geometry of open DNA. J. Chem. Phys.118:9864–9874, 2003

    Article  CAS  Google Scholar 

  19. Sethian, J. A. Level Set Methods and Fast Marching Methods. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  20. Ujiie, H., H. Tachibana, O. Hiramatsu, A. L. Hazel, T. Matsumoto, Y. Ogasawara, H. Nakajima, T. Hori, K. Takakura, and F. Kajiya. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45(1):119–130, 1999.

    Article  Google Scholar 

  21. Wardlaw, J. M. and P. M. White. The detection and management of unruptured intracranial aneurysms. Brain 123(2):205–221, 2000.

    Article  PubMed  Google Scholar 

  22. Wiebers, D. O. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110, 2003.

    Article  PubMed  Google Scholar 

  23. Wiebers, D. O. Patients with small, asymptomatic, unruptured intracranial aneurysms and no history of subarachnoid hemorrhage should generally be treated conservatively: for. Stroke 36:408–409, 2005.

    Article  PubMed  Google Scholar 

  24. Wolfe, S. Q., M. K. Baskaya, R. C. Heros, and R. P. Tummala. Cerebral aneurysms: learning from the past and looking toward the future. Clin. Neurosurg. 53:157–178, 2006.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Lauric.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1139 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauric, A., Miller, E.L., Baharoglu, M.I. et al. 3D Shape Analysis of Intracranial Aneurysms Using the Writhe Number as a Discriminant for Rupture. Ann Biomed Eng 39, 1457–1469 (2011). https://doi.org/10.1007/s10439-010-0241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0241-x

Keywords

Navigation