Skip to main content

Advertisement

Log in

An Automated Segmentation Approach for Highlighting the Histological Complexity of Human Lung Cancer

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Lung cancer nodules, particularly adenocarcinoma, contain a complex intermixing of cellular tissue types: incorporating cancer cells, fibroblastic stromal tissue, and inactive fibrosis. Quantitative proportions and distributions of the various tissue types may be insightful for understanding lung cancer growth, classification, and prognostic factors. However, current methods of histological assessment are qualitative and provide limited opportunity to systematically evaluate the relevance of lung nodule cellular heterogeneity. In this study we present both a manual and an automatic method for segmentation of tissue types in histological sections of resected human lung cancer nodules. A specialized staining approach incorporating immunohistochemistry with a modified Masson’s Trichrome counterstain was employed to maximize color contrast in the tissue samples for automated segmentation. The developed, clustering-based, fully automated segmentation approach segments complete lung nodule cross-sectional histology slides in less than 1 min, compared to manual segmentation which requires multiple hours to complete. We found the accuracy of the automated approach to be comparable to that of the manual segmentation with the added advantages of improved time efficiency, removal of susceptibility to human error, and 100% repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brambilla, E., W. D. Travis, T. V. Colby, B. Corrin, and Y. Shimosato. The new World Health Organization classification of lung tumours. Eur. Respir. J. 18:1059–1068, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Di Cataldo, S., E. Ficarra, A. Acquaviva, and E. Macii. Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach: a quantitative evaluation. Comput. Med. Imaging Graph., in press, 2010.

  3. Dufour, J. F., R. DeLellis, and M. M. Kaplan. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann. Intern. Med. 127:981–985, 1997.

    CAS  PubMed  Google Scholar 

  4. Guillemin, F., M. Devaux, and F. Guillon. Evaluation of plant histology by automatic clustering based on individual cell morphological features. Image Anal. Stereol. 23:13–22, 2004.

    Google Scholar 

  5. Hartigan, A., and M. A. Wong. A k-means clustering algorithm. Appl. Stat. 28:100–108, 1979.

    Article  Google Scholar 

  6. Inoue, M., T. Takakuwa, M. Minami, H. Shiono, T. Utsumi, Y. Kadota, T. Nasu, K. Aozasa, and M. Okumura. Clinicopathologic factors influencing postoperative prognosis in patients with small-sized adenocarcinoma of the lung. J. Thorac. Cardiovasc. Surg. 135:830–836, 2008.

    Article  PubMed  Google Scholar 

  7. Karacali, B., A. P. Vamvakidou, and A. Tozeren. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers. BMC Med. Imaging 7:7, 2007.

    Article  PubMed  Google Scholar 

  8. Latson, L., B. Sebek, and K. A. Powell. Automated cell nuclear segmentation in color images of hematoxylin and eosin-stained breast biopsy. Anal. Quant. Cytol. Histol. 25:321–331, 2003.

    PubMed  Google Scholar 

  9. Lazarous, D. F., M. Shou, and E. F. Unger. Combined bromodeoxyuridine immunohistochemistry and Masson trichrome staining: facilitated detection of cell proliferation in viable vs. Infarcted myocardium. Biotech. Histochem. 67:253–255, 1992.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, W. M. Acute liver failure. N. Engl. J. Med. 329:1862–1872, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, L. J., and A. B. Fogo. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64:350–355, 2003.

    Article  PubMed  Google Scholar 

  12. Maeshima, A. M., T. Niki, A. Maeshima, T. Yamada, H. Kondo, and Y. Matsuno. Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer 95:2546–2554, 2002.

    Article  PubMed  Google Scholar 

  13. Meyrier, A. Mechanisms of disease: focal segmental glomerulosclerosis. Nat. Clin. Pract. Nephrol. 1:44–54, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Moll, R., W. W. Franke, D. L. Schiller, B. Geiger, and R. Krepler. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24, 1982.

    Article  CAS  PubMed  Google Scholar 

  15. Namati, E., J. De Ryk, J. Thiesse, Z. Towfic, E. Hoffman, and G. McLennan. Large image microscope array for the compilation of multimodality whole organ image databases. Anat. Rec. (Hoboken) 290:1377–1387, 2007.

    Google Scholar 

  16. Okudera, K., Y. Kamata, S. Takanashi, Y. Hasegawa, T. Tsushima, Y. Ogura, K. Nakanishi, H. Sato, and K. Okumura. Small adenocarcinoma of the lung: prognostic significance of central fibrosis chiefly because of its association with angiogenesis and lymphangiogenesis. Pathol. Int. 56:494–502, 2006.

    Article  PubMed  Google Scholar 

  17. Ouyang, J., M. Guzman, F. Desoto-Lapaix, M. R. Pincus, and R. Wieczorek. Utility of desmin and a Masson’s trichrome method to detect early acute myocardial infarction in autopsy tissues. Int. J. Clin. Exp. Pathol. 3:98–105, 2009.

    PubMed  Google Scholar 

  18. Petushi, S., F. U. Garcia, M. M. Haber, C. Katsinis, and A. Tozeren. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6:14, 2006.

    Article  PubMed  Google Scholar 

  19. Rudolph, K. L., S. Chang, M. Millard, N. Schreiber-Agus, and R. A. DePinho. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287:1253–1258, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Sakao, Y., H. Miyamoto, M. Sakuraba, T. Oh, K. Shiomi, S. Sonobe, and H. Izumi. Prognostic significance of a histologic subtype in small adenocarcinoma of the lung: the impact of nonbronchioloalveolar carcinoma components. Ann. Thorac. Surg. 83:209–214, 2007.

    Article  PubMed  Google Scholar 

  21. Sieren, J. C., J. Weydert, E. Namati, J. Thiesse, J. P. Sieren, J. M. Reinhardt, E. Hoffman, and G. McLennan. A process model for direct correlation between computed tomography and histopathology—application in lung cancer. Acad. Radiol. 17:169–180, 2009.

    Article  Google Scholar 

  22. Sugimoto, H., G. Grahovac, M. Zeisberg, and R. Kalluri. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56:1825–1833, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, K., T. Yokose, J. Yoshida, M. Nishimura, K. Takahashi, K. Nagai, and Y. Nishiwaki. Prognostic significance of the size of central fibrosis in peripheral adenocarcinoma of the lung. Ann. Thorac. Surg. 69:893–897, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Terasaki, H., T. Niki, Y. Matsuno, T. Yamada, A. Maeshima, H. Asamura, N. Hayabuchi, and S. Hirohashi. Lung adenocarcinoma with mixed bronchioloalveolar and invasive components: clinicopathological features, subclassification by extent of invasive foci, and immunohistochemical characterization. Am. J. Surg. Pathol. 27:937–951, 2003.

    Article  PubMed  Google Scholar 

  25. Travis, W. D., K. Garg, W. A. Franklin, I. I. Wistuba, B. Sabloff, M. Noguchi, R. Kakinuma, M. Zakowski, M. Ginsberg, R. Padera, F. Jacobson, B. E. Johnson, F. Hirsch, E. Brambilla, D. B. Flieder, K. R. Geisinger, F. Thunnisen, K. Kerr, D. Yankelevitz, T. J. Franks, J. R. Galvin, D. W. Henderson, A. G. Nicholson, P. S. Hasleton, V. Roggli, M. S. Tsao, F. Cappuzzo, and M. Vazquez. Evolving concepts in the pathology and computed tomography imaging of lung adenocarcinoma and bronchioloalveolar carcinoma. J. Clin. Oncol. 23:3279–3287, 2005.

    Google Scholar 

  26. Wick, M. R. Diagnostic Histochemistry. Cambridge: Cambridge University Press, p. 20, 2008.

    Google Scholar 

  27. Wolberg, W. H., W. N. Street, and O. L. Mangasarian. Computer-derived nuclear features compared with axillary lymph node status for breast carcinoma prognosis. Cancer 81:172–179, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Iannettoni for support of this research and assistance with patient identification. We also thank Dr. L. Van Natta, Dr. W. Lynch, Dr. K. Parekh, Ms. J. Rick-McGillin, and Ms. K. McLauglin for assisting patient recruitment; Ms. J. Rodgers, Ms. K. Walters, and Mr. A. Stessman for technical assistance with histopathological preparation. Research for this project was supported by funding from the National Institutes of Health (R01 CA129022). The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey McLennan.

Additional information

Associate Editor Anne Clough oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieren, J.C., Weydert, J., Bell, A. et al. An Automated Segmentation Approach for Highlighting the Histological Complexity of Human Lung Cancer. Ann Biomed Eng 38, 3581–3591 (2010). https://doi.org/10.1007/s10439-010-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0103-6

Keywords

Navigation