Skip to main content
Log in

Fluid Dynamics of Gas Exchange in High-Frequency Oscillatory Ventilation: In Vitro Investigations in Idealized and Anatomically Realistic Airway Bifurcation Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this work is to develop understanding of the local fluid dynamic mechanisms that underpin gas exchange in high-frequency oscillatory ventilation (HFOV). The flow field during HFOV was investigated experimentally using particle image velocimetry in idealized and realistic models of a single bifurcation. Results show that inspiratory and expiratory fluid streams coexist in the airway at flow reversal, and mixing between them is enhanced by secondary flow and by vortices associated with shear layers. Unsteady flow separation and recirculation occurs in both geometries. The magnitude of secondary flow is greater in the realistic model than in the idealized model, and the structure of secondary flow is quite different. However, other flow structures are qualitatively similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308, 2000. doi:10.1056/NEJM200005043421801

    Google Scholar 

  2. Banvard, R. A. The Visible Human Project image data set from inception to completion and beyond. Proceedings of CODATA 2002: Frontiers of Scientific and Technical Data, Montreal, Canada, 2002

  3. Bryan A. C. (2001) The oscillations of HFO. Am. J. Respir. Crit. Care Med. 163:816–817

    PubMed  CAS  Google Scholar 

  4. Chang H. K. (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J. Appl. Physiol., 56: 553–563

    PubMed  CAS  Google Scholar 

  5. Comer J. K., C. Kleinstreuer, Z. Zhang (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435:25–54. doi:10.1017/S0022112001003809

    Google Scholar 

  6. Derdak, S., S. Mehta, T. E. Stewart, T. Smith, M. Rogers, T. G. Buchman, B. Carlin, S. Lowson, J. Granton, and the Multicenter Oscillatory Ventilation for Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am. J. Respir. Crit. Care Med. 166:801–808, 2002. doi:10.1164/rccm.2108052

  7. Eckmann D. M., J. B. Grotberg (1988) Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188:509–527. doi:10.1017/S0022112088000825

    Article  Google Scholar 

  8. Fresconi F. E., A. S. Wexler, A. K. Prasad (2003) Expiration flow in a symmetric bifurcation. Exp. Fluids 35: 493–501. doi:10.1007/s00348-003-0713-y

    Article  Google Scholar 

  9. Fujioka H., K. Oka, K. Tanishita (2001) Oscillatory flow and gas transport through a symmetrical bifurcation. J. Biomech. Eng. 123:145–153. doi:10.1115/1.1352735

    Article  PubMed  CAS  Google Scholar 

  10. Gerrard J. H., M. D. Hughes (1971) The flow due to an oscillatory piston in a cylindrical tube: a comparison between experiment and a simple entrance flow theory. J. Fluid Mech. 50:97–106. doi:10.1017/S0022112071002477

    Article  Google Scholar 

  11. Große S., W. Schröder, M. Klaas, A. Klöckner, J. Roggenkamp (2007) Time resolved analysis of steady and oscillating flow in the upper human airways. Exp. Fluids 42: 955–970. doi:10.1007/s00348-007-0318-y

    Article  Google Scholar 

  12. Haselton F. R., P. W. Scherer (1982) Flow visualization of steady streaming in oscillatory flow through a bifurcating tube. J. Fluid Mech. 123:315–333. doi:10.1017/S0022112082003085

    Article  Google Scholar 

  13. Insight 3GTM Data Acquisition Analysis and Display Software User Guide. Shoreview: TSI Inc., 2006

  14. Jan D. L., A. H. Shapiro, R. D. Kamm (1989) Some features of oscillatory flow in a model bifurcation. J. Appl. Physiol. 67:147–159

    PubMed  CAS  Google Scholar 

  15. Kelly J. T., A. K. Prasad, A. S. Wexler (2000) Detailed flow patterns in the nasal cavity. J. Appl. Physiol. 89:323–337

    PubMed  CAS  Google Scholar 

  16. Krishnan J. A., R. G. Brower (2000) High frequency ventilation for acute lung injury and ARDS. Chest 118:795–807. doi:10.1378/chest.118.3.795

    Article  PubMed  CAS  Google Scholar 

  17. Lieber B. B., Y. Zhao (1998) Oscillatory flow in a symmetric bifurcation airway model. Ann. Biomed. Eng. 26:821–830. doi:10.1114/1.128

    Article  PubMed  CAS  Google Scholar 

  18. Marchak B. E., W. K. Thompson, P. Duffty, T. Miyaki, M. H. Bryan, A. C. Bryan, A. B. Froese (1981) Treatment of RDS by high-frequency oscillatory ventilation: a preliminary report. J. Pediatr. 99:287–292. doi:10.1016/S0022-3476(81)80480-5

    Article  PubMed  CAS  Google Scholar 

  19. Mehta S., J. Granton, R. J. MacDonald, D. Bowman, A. Matte-Martyn, T. Bachman, T. Smith, T. E. Stewart (2004) High-frequency oscillatory ventilation in adults: the Toronto experience. Chest 126:518–527. doi:10.1378/chest.126.2.518

    Article  PubMed  Google Scholar 

  20. Moganasundram S., A. Durward, S. M. Tibby, I. A. Murdoch (2002) High-frequency oscillation in adolescents. Br. J. Anaesth. 88:708–711. doi:10.1093/bja/88.5.708

    Article  PubMed  CAS  Google Scholar 

  21. Nishida M., Y. Inaba, K. Tanishita (1997) Gas dispersion in a model pulmonary bifurcation during oscillatory flow. J. Biomech. Eng. 119:309–316. doi:10.1115/1.2796095

    Article  PubMed  CAS  Google Scholar 

  22. Nowak N., P. P. Kakade, A. V. Annapragada (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390. doi:10.1114/1.1560632

    Article  PubMed  Google Scholar 

  23. Olson, D. E. Fluid mechanics relevant to respiration—flow within curved or elliptical tubes and bifurcating systems. Ph.D. Thesis, London University, London, 1971

  24. Peattie R. A., W. Schwarz (1998) Experimental investigation of oscillatory flow through a symmetrically bifurcating tube. J. Biomech. Eng. 120:584–593. doi:10.1115/1.2834748

    Article  PubMed  CAS  Google Scholar 

  25. Raffel, M., C. Willert, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer-Verlag, 1998

  26. Ramuzat, A., and M. L. Riethmuller. PIV investigation of oscillating flows within a 3D lung multiple bifurcations model. 11th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2002

  27. Rimensberger P. C., M. Beghetti, S. Hanquinet, M. Berner (2000) First intention high-frequency oscillation with early lung volume optimization improves pulmonary outcome in very low birth weight infants with respiratory distress syndrome. Pediatrics 105:1202–1208. doi:10.1542/peds.105.6.1202

    Article  PubMed  CAS  Google Scholar 

  28. Rubenfeld G. D. (2003) Epidemiology of acute lung injury. Crit. Care Med. 31:S276–284. doi:10.1097/01.CCM.0000057904.62683.2B

    Article  PubMed  Google Scholar 

  29. Schroter R. C., M. F. Sudlow (1969) Flow patterns in models of the human bronchial airways. Respir. Physiol. 7:341–355. doi:10.1016/0034-5687(69)90018-8

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka G., T. Ogata, K. Oka, K. Tanishita (1999) Spatial and temporal variation of secondary flow during oscillatory flow in model human central airways. J. Biomech. Eng. 121:565–573. doi:10.1115/1.2800855

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka G., Y. Ueda, K. Tanishita (1998) Augmentation of axial dispersion by intermittent oscillatory flow. J. Biomech. Eng. 120:405–415. doi:10.1115/1.2798008

    Article  PubMed  CAS  Google Scholar 

  32. Taylor G. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219: 186–203. doi:10.1098/rspa.1953.0139

    Article  CAS  Google Scholar 

  33. Taylor G. (1954) The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A Math. Phys. Sci. 223: 446–468. doi:10.1098/rspa.1954.0130

    CAS  Google Scholar 

  34. Weibel E. R. (1963) Morphometry of the Human Lung. New York: Academic Press

    Google Scholar 

  35. Womersley J. R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when their pressure gradient is known. J. Appl. Physiol. 127:553–563

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. Sue Harty and Dr. Gerard O’Sullivan of the Merlin Park Imaging Centre for providing CT images of the models. We also thank Mr. Colm Walsh and Mr. Kumar Saidha for their contributions to the development of the flow apparatus. This research was supported by the Irish Research Council for Science, Engineering and Technology, funded by the National Development Plan; the Programme for Research in Third Level Institutions; and National University of Ireland, Galway through the Millennium Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Quinlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heraty, K.B., Laffey, J.G. & Quinlan, N.J. Fluid Dynamics of Gas Exchange in High-Frequency Oscillatory Ventilation: In Vitro Investigations in Idealized and Anatomically Realistic Airway Bifurcation Models. Ann Biomed Eng 36, 1856–1869 (2008). https://doi.org/10.1007/s10439-008-9557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9557-1

Keywords

Navigation