Skip to main content

Advertisement

Log in

Nuclear Magnetic Resonance Studies of Bone Water

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mineralized bone tissue has a significant water component. Bone water is associated with the collagen fibers or mineral fraction or occurring as pore water of the Haversian and lacuno–canalicular system. Among the multiple physiologic functions that include signaling and providing to bone its viscoelastic properties, bone water enables the transport of ions and nutrients to and waste products from the cells. In addition, it plays a key role during mineralization whereby collagen-bound water is gradually replaced by calcium apatite-like mineral. In this review it is shown how nuclear magnetic resonance (NMR) allows the study of various physiologically relevant properties of bone water nondestructively. Isotope exchange experiments are described from which the apparent water diffusion coefficient can be calculated. The method is based on monitoring the migration of H2O into the D2O after immersion of the specimen in heavy water. Data obtained from rabbit cortical bone in the normal and mineral-depleted skeleton provide evidence for the hypothesized reciprocal relationship between bone water and mineral. Further, from the diffusion coefficient (D a = (7.8 ± 1.5) × 10−7 cm2/s) measured at 40°C it can be inferred that diffusive transport of small molecules from the bone’s microvascular system to the osteocytes occurs within minutes. Finally, whereas isotope exchange is not feasible in vivo, it is shown that bone water can be imaged by proton MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, J. L., D. P. Raleigh, and M. J. Glimcher. Phosphorus-31 magnetic resonance imaging of hydroxyapatite: A model for bone imaging. Magn. Reson. Med. 25:11–11, 1992.

    Google Scholar 

  2. Ayasaka, N., T. Kondo, T. Goto, M. A. Kido, E. Nagata, and T. Tanaka. Differences in the transport systems between cementocytes and osteocytes in rats using microperoxidase as a tracer. Arch. Oral. Biol. 37:5363–369, 1992.

    Article  Google Scholar 

  3. Basha, B., D. S. Rao, Z. H. Han, and A. M. Parfitt. Osteomalacia due to vitamin D depletion: A neglected consequence of intestinal malabsorption. Am. J. Med. 108:4296–300, 2000.

    Article  Google Scholar 

  4. Boivin, G. Y., P. M. Chavassieux, A. C. Santora, J. Yates, and P. J. Meunier. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:5687–694, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Borgia, G. C., R. J. Brown, and P. Fantazzini. Examples of marginal resolution of NMR relaxation peaks using UPEN and diagnostics. Magn. Reson. Imaging 19(3–4):473–475, 2001.

    Article  Google Scholar 

  6. Brommage, R., S. C. Miller, C. B. Langman, R. Bouillon, R. Smith, and J. E. Bourdeau. The effects of chronic vitamin D deficiency on the skeleton in the adult rabbit. Bone 9:3131–139, 1988.

    Article  Google Scholar 

  7. Brown, C. E., J. H. Battocletti, R. Srinivasan, J. R. Allaway, J. Moore, and P. Sigmann. In vivo 31P nuclear magnetic resonance spectroscopy of bone mineral for evaluation of osteoporosis. Clin. Chem. 34:71431–1438, 1988.

    Google Scholar 

  8. Brown, C. E., J. R. Allaway, K. L. Brown, and J. H. Battocletti. Noninvasive evaluation of mineral content of bone without use of ionizing radiation. Clin. Chem. 33(2 Pt 1):227–236, 1987.

    Google Scholar 

  9. Cho, G., Y. Wu, and J. L. Ackerman. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:56221123–1127, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Cho, Z. H., and Y. M. Ro. Multipoint K-space point mapping (KPM) technique for NMR microscopy. Magn. Reson. Med. 32:2258–262, 1994.

    Google Scholar 

  11. Crank, J. The Mathematics of Diffusion, 2nd ed. London: Oxford University Press, 1957, pp. 347.

  12. Currey, J. D. The mechanical consequences of variations in the mineral content of bone. J. Biomech. 2:1–11, 1969.

    Article  Google Scholar 

  13. Dillaman, R. M., R. D. Roer, and D. M. Gay. Fluid movement in bone: Theoretical and empirical. J. Biomech. 24(S1):163–177, 1991.

    Article  Google Scholar 

  14. Edelman, I. S., A. H. James, H. Baden, and F. D. Moore. Electrolyte composition of bone and the penetration of radiosodium and deuterium oxide into dog and human bone. J. Clin. Invest. 33:122–131, 1954.

    Article  Google Scholar 

  15. Emid, S., and J. H. N. Creyghton. High resolution NMR imaging in solids. Phys. B 128:81, 1985.

    Google Scholar 

  16. Fantazzini, P., R. J. Brown, and G. C. Borgia. Bone tissue and porous media: Common features and differences studied by NMR relaxation. Magn. Reson. Imaging 21(3–4):227–234, 2003.

    Article  Google Scholar 

  17. Fantazzini, P., R. Viola, S. M. Alnaimi, and J. H. Strange. Combined MR-relaxation and MR-cryoporometry in the study of bone microstructure. Magn. Reson. Imaging 19(3–4):481–484, 2001.

    Article  Google Scholar 

  18. Fernandez-Seara, M., S. L. Wehrli, M. Takahashi, and F. W. Wehrli. Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J. Bone Miner. Res. 19:2289–296, 2004.

    Google Scholar 

  19. Fernandez-Seara, M., S. L. Wehrli, and F. W. Wehrli. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys. J. 82:522–529, 2002.

    Article  Google Scholar 

  20. Fernandez-Seara, M., S. L. Wehrli, and F. W. Wehrli. Multipoint mapping for imaging of semisolid materials. J. Magn. Reson. 160:144–150, 2003.

    Article  Google Scholar 

  21. Garner, E., R. Lakes, T. Lee, C. Swan, and R. Brand Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J. Biomech. Eng. 122:2166–172, 2000.

    Article  Google Scholar 

  22. Gravina, S., and D. G. Cory. Sensitivity and resolution of constant-time imaging. J. Magn. Reson. 104:53–61, 1994.

    Article  Google Scholar 

  23. Knothe Tate, M. L., U. Knothe, and P. Niederer. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am. J. Med. Sci. 316:3189–195, 1998.

    Article  Google Scholar 

  24. Lindgren, J. U., H. F. DeLuca, and R. B. Mazess. Effects of 1,25(OH)2D3 on bone tissue in the rabbit: Studies on fracture healing, disuse osteoporosis, and prednisone osteoporosis. Calcif. Tissue Int. 36:591–595, 1984.

    Google Scholar 

  25. Martin, R. B., and D. B. Burr. Structure, Function, and Adaptation of Compact Bone. New York: Raven Press.

  26. Meunier, P. J., and G. Boivin. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:5373–377, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Moore, J., L. Garrido, and J. Ackerman. Solid-state 31P magnetic resonance imaging of bone mineral. Magn. Reson. Med. 33:293–299, 1995.

    Google Scholar 

  28. Moreno, E. C., and E. J. Burke. A diaphragm cell and the procedure for studying isothermal diffusion in dental enamel. Arch. Oral. Biol. 19:5417–420, 1974.

    Article  Google Scholar 

  29. Myers, T. J., J. H. Battocletti, M. Mahesh, M. Gulati, C. R. Wilson, F. Pintar, and J. Reinartz. Comparison of nuclear magnetic resonance spectroscopy with dual-photon absorptiometry and dual-energy X-ray absorptiometry in the measurement of thoracic vertebral bone mineral density: Compressive force versus bone mineral. Osteoporos. Int. 4:3129–137, 1994.

    Google Scholar 

  30. Neuman, W. F., and M. W. Neuman. Skeletal Dynamics the Chemical Dynamics of Bone Mineral. Chicago: Univ. of Chicago Press, 1958, pp. 101.

    Google Scholar 

  31. Neuman, W. F., and M. W. Neuman. Studies of diffusion in calvaria. Calcif. Tissue Int. 33:4441–444, 1981.

    MathSciNet  Google Scholar 

  32. Nuzzo, S. M. H. Lafage-Proust, E. Martin-Badosa, G. Boivin, T. Thomas, C. Alexandre, and F. Peyrin. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: Effects of etidronate treatment. J. Bone Miner. Res. 17:81372–1382, 2002.

    Google Scholar 

  33. Paschalis, E. P., A. L. Boskey, M. Kassem, and E. F. Eriksen. Effect of hormone replacement therapy on bone quality in early postmenopausal women. J. Bone Miner. Res. 18:6955–959, 2003.

    Google Scholar 

  34. Robinson, R. A., and S. R. Elliot. The water content of bone. J. Bone Joint Surg. 39A:167–188, 1957.

    Google Scholar 

  35. Robinson, R. F. An electron-microscopy study of the crystalline inorganic component of bone and its relationship to the organic matrix. J. Bone Joint Surg. 34-A(2):389–435, 1952.

    Google Scholar 

  36. Robson, M. D., P. D. Gatehouse, M. Bydder, and G. M. Bydder. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. J. Comput. Assist. Tomogr. 27:6825–846, 2003.

    Article  Google Scholar 

  37. Stejskal, E. O. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42:288–292, 1965.

    Article  Google Scholar 

  38. Takahashi, M., F. W. Wehrli, L. Hilaire, B. S. Zemel, and S. N. Hwang. In vivo NMR microscopy allows short-term serial assessment of multiple skeletal implications of corticosteroid exposure. Proc. Natl. Acad. Sci. USA 19:19, 2002.

    Google Scholar 

  39. Tate, M. L., and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:2247–254, 2000.

    Article  Google Scholar 

  40. Tate, M. L., P. Niederer, and U. Knothe. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:2107–117, 1998.

    Article  Google Scholar 

  41. Timmins, P. A., and J. C. Wall. Bone water. Calcif. Tissue Res. 23:11–5, 1977.

    Google Scholar 

  42. Van der Graaf, E. R., and J. J. ten Bosch. The uptake of water by freeze-dried human dentine sections. Arch. Oral. Biol. 35:9731–739, 1990.

    Article  Google Scholar 

  43. Van Rietbergen, B., R. Huiskes, F. Eckstein, and P. Ruegsegger . Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res. 18:101781–1788, 2003.

    Google Scholar 

  44. Vose, G., and A. Kubala. Bone strength—its relationship to X-ray determined ash content. Hum. Biol. 31:262–270, 1959.

    Google Scholar 

  45. Wang, X., and Q. Ni. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J. Orthop. Res. 21:2312–319, 2003.

    Article  Google Scholar 

  46. Wu, D. D., R. D. Boyd, T. J. Fix, and D. B. Burr. Regional patterns of bone loss and altered bone remodeling in response to calcium deprivation in laboratory rabbits. Calcif. Tissue Int. 47:118–23, 1990.

    Google Scholar 

  47. Wu, Y., D. A. Chesler, M. J. Glimcher, L. Garrido, J. Wang, H. J. Jiang, and J. L. Ackerman. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates. Proc. Natl. Acad. Sci. USA 96:41574–1578, 1999.

    Article  Google Scholar 

  48. Wu, Y., J. L. Ackerman, D. A. Chesler, J. Li, R. M. Neer, J. Wang, and M. J. Glimcher. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging. Calcif. Tissue Int. 62:6512–518, 1998.

    Article  Google Scholar 

  49. Wu, Y., M. J. Glimcher, C. Rey, and J. L. Ackerman. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy. J. Mol. Biol. 244:423–435, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix W. Wehrli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrli, F.W., Fernández-Seara, M.A. Nuclear Magnetic Resonance Studies of Bone Water. Ann Biomed Eng 33, 79–86 (2005). https://doi.org/10.1007/s10439-005-8965-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8965-8

Navigation