Skip to main content
Log in

Two price economies in continuous time

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

Static and discrete time pricing operators for two price economies are reviewed and then generalized to the continuous time setting of an underlying Hunt process. The continuous time operators define nonlinear partial integro–differential equations that are solved numerically for the three valuations of bid, ask and expectation. The operators employ concave distortions by inducing a probability into the infinitesimal generator of a Hunt process. This probability is then distorted. Two nonlinear operators based on different approaches to truncating small jumps are developed and termed \(QV\) for quadratic variation and \(NL\) for normalized Lévy. Examples illustrate the resulting valuations. A sample book of derivatives on a single underlier is employed to display the gap between the bid and ask values for the book and the sum of comparable values for the components of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahimud, Y., Mendelson, H., Pedersen, L.: Liquidity and Asset Pricing. Boston: Now Publishers Inc. (2006)

  • Allen, F., Gale, D.: Understanding Financial Crisis. Oxford: Oxford University Press (2007)

  • Artzner, P., Delbaen, F., Eber, M., Heath, D.: Coherent measures of risk. Math Financ 9, 203–228 (1999)

    Article  Google Scholar 

  • Bielecki, T., Cialenco, I., Zhang, Z.: Dynamic Coherent Acceptability Indices and their Applications to Finance. arXiv:1010.4339v2[q-fin.RM] (2011)

  • Bion-Nadal, J.: Bid-ask dynamic pricing in financial markets with transactions costs and liquidity risk. J Math Econ 45, 738–750 (2009)

    Article  Google Scholar 

  • Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J Bus 75, 305–332 (2002)

    Article  Google Scholar 

  • Carr, P., Madan, D.B.: Markets, profits, capital, leverage and returns. J Risk 14, 95–122 (2011)

    Google Scholar 

  • Cherny, A., Madan, D.: New measures for performance evaluation. Rev Financ Stud 22, 2571–2606 (2009)

    Article  Google Scholar 

  • Cherny, A., Madan, D.B.: Markets as a counterparty: an introduction to conic finance. Int J Theor Appl Financ 13, 1149–1177 (2010)

    Article  Google Scholar 

  • Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1954)

    Article  Google Scholar 

  • Cohen, S., Elliott, R.J.: A general theory of finite state backward stochastic difference equations. Stoch Process Appl 120(4), 442–466 (2010)

    Article  Google Scholar 

  • Davis, M.H.A., Hobson, D.G.: The range of traded option prices. Math Financ 17, 1–14 (2007)

    Article  Google Scholar 

  • Eberlein, E., Madan, D.B.: Unlimited liabilities, reserve capital requirements and the taxpayer put option. Quant Financ 12, 709–724 (2012)

    Article  Google Scholar 

  • Eberlein, E., Gehrig, T., Madan, D.B.: Accounting to acceptability: with applications to the pricing of one’s own credit risk. J Risk 15(1), 91–120 (2012)

    Google Scholar 

  • Freixas, X., Rochet, J.-C.: The Microeconomics of Banking, 2nd edn. Boston: MIT Press (2008)

  • Hunt, G.: Martingales et Processus de Markov. Paris: Dunod (1966)

  • Jobert, A., Rogers, L.C.G.: Pricing operators and dynamic convex risk measures. Math Financ 18, 1–22 (2008)

    Article  Google Scholar 

  • Kunita, H.: Infinitesimal generators of nonhomogeneous convolution semigroups on lie groups. Osaka J Math 34, 233–264 (1997)

    Google Scholar 

  • Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math Financ Econ 2, 189–210 (2009)

    Article  Google Scholar 

  • Kusuoka, S.: On law invariant coherent risk measures. Adv Math Econ 3, 83–95 (2001)

    Article  Google Scholar 

  • Madan, D.: Capital requirements, acceptable risks and profits. Quant Financ 7, 767–773 (2009)

    Article  Google Scholar 

  • Madan, D.B.: Joint risk neutral laws and hedging. Trans Inst Ind Eng 43, 840–850 (2010)

    Google Scholar 

  • Madan, D.B.: On pricing contingent capital notes. In: Kijima, M., Muromachi, Y., Nakaoka, H. (eds.) Recent Advances in Financial Engineering 2011: Proceedings of the KIER-TMU International Workshop on Financial Engineering. Singapore: World Scientific (2011)

  • Madan, D.B.: A two price theory of financial equilibrium with risk management implications. Ann Financ 8(4), 489–505 (2012)

    Article  Google Scholar 

  • Madan, D.B., Schoutens, W.: Conic finance and the corporate balance sheet. Int J Theor Appl Financ 14, 587–610 (2011a)

    Article  Google Scholar 

  • Madan, D.B., Schoutens, W.: Conic coconuts: the pricing of contingent capital notes using conic finance. Math Financ Econ 4, 87–106 (2011b)

    Article  Google Scholar 

  • Madan, D.B., Schoutens, W.: Structured products equilibria in conic two price markets. Math Financ Econ 6, 37–57 (2012a)

    Article  Google Scholar 

  • Madan, D.B., Schoutens, W.: Tenor specific pricing. Int J Theor Appl Financ 15, 6 (2012b). doi: 10.1142/S0219024912500434

  • Madan, D., Seneta, E.: The variance gamma (V.G.) model for share market returns. J Bus 63, 511–524 (1990)

    Article  Google Scholar 

  • Madan, D., Carr, P., Chang, E.: The variance gamma process and option pricing. Eur Financ Rev 2, 79–105 (1998)

    Article  Google Scholar 

  • Madan, D.B., Wang, S., Heckman, P.: A Theory of Risk for Two Price Market Equilibria (2011). www.casact.org/liquidity/LRP9.1.pdf

  • Madan, D.B., Pistorius, M., Schoutens, W.: The valuation of structured products using Markov Chain models. Quant Financ 13(1), 125–136 (2013)

    Article  Google Scholar 

  • Mijatović, A., Pistorius, M.: Continuously monitored Barrier options under Markov processes. Math Financ 23(1), 1–38 (2013)

    Article  Google Scholar 

  • Peng, S.: Dynamically Consistent Nonlinear Evaluations and Expectations. Preprint No. 2004–1, Institute of Mathematics, Shandong University (2004). http://arxiv.org/abs/math/0501415

  • Peng, S.: G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itô Type (2006). arXiv:math/0601035v2 [math.PR]

  • Rosazza Gianin, E.: Risk measures via g-expectations. Insur Math Econ 39, 19–34 (2006)

    Article  Google Scholar 

  • Rosazza Gianin, E., Sgarra, C.: Acceptability Indexes Via G-Expectations: An Application to Liquidity Risk. SSRN.2027787 (2012)

Download references

Acknowledgments

Dilip Madan and Marc Yor acknowledge the support from the Humboldt foundation as Research Award Winners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Madan.

Appendix

Appendix

Proof that \(c(A),\) (5) is a Choquet capacity.

To show that \(c\) is a capacity we must show that

$$\begin{aligned} c(A\cup B)+c(A\cap B)\le c(A)+c(B) \end{aligned}$$

Defining

$$\begin{aligned} a&= Q^{*}(A-B) \\ b&= Q^{*}(B-A) \\ c&= Q^{*}(A\cap B) \end{aligned}$$

we must show that

$$\begin{aligned} \Psi (a+b+c)+\Psi (c)\le \Psi (a+c)+\Psi (b+c). \end{aligned}$$

Equivalently we have

$$\begin{aligned} \Psi (a+b+c)-\Psi (a+c)\le \Psi (b+c)-\Psi (c). \end{aligned}$$

Now

$$\begin{aligned} \Psi (a+b+c)-\Psi (a+c)&= \int \limits _{a+c}^{a+b+c}\Psi ^{\prime }(x)dx \\&= \int \limits _{c}^{b+c}\Psi ^{\prime }(a+x)dx \\&\le \int \limits _{c}^{b+c}\Psi ^{\prime }(x)dx, \text{ as } \Psi ^{\prime }\text{ is } \text{ decreasing. } \\&= \Psi (b+c)-\Psi (c). \end{aligned}$$

Proof that \(\mathcal{G }_{QV}(u(.,t))\le \mathcal{L }(u(.,t))\)

The operator \(\mathcal{G }_{QV}(u(.,t))\) evaluates the distorted expectation of a random variable \(Y_{x,t}\) with distribution function \(F_{x,t}(v)\) that may be written as

$$\begin{aligned} -\int \limits _{-\infty }^{0}\Psi (F_{x,t}(v))dv+\int \limits _{0}^{\infty }\left( 1-\Psi (F_{x,t}(v)\right) dv. \end{aligned}$$

On the other hand the operator \(\mathcal{L }\) evaluates the expectation that may be written as

$$\begin{aligned} -\int \limits _{-\infty }^{0}F_{x,t}(v)dv+\int \limits _{0}^{\infty }\left( 1-F_{x,t}(v)\right) dv. \end{aligned}$$

The results follows on noting that \(\Psi (u)\ge u\).

Proof of Eq. (17)

We begin by writing

$$\begin{aligned} u\left( X_{t},T-t\right)&= u(X_{0},T)+\sum _{(t_{n})}\left( u(X_{t_{i+1}},T-t_{i+1}\right) -u(X_{t_{i}},T-t_{i})) \\&= u(X_{0},T)+(A)+(B) \end{aligned}$$

where \((t_{n})\) is a sequence of subdivisions of \([0,t],\) with mesh going to zero and

$$\begin{aligned} A&= \sum _{(t_{n})}\left\{ u\left( X_{t_{i+1}},T-t_{i+1}\right) -u(X_{t_{i}},T-t_{i+1})\right\} \\ B&= \sum _{(t_{n})}\left\{ u\left( X_{t_{i}},T-t_{i+1}\right) -u(X_{t_{i}},T-t_{i})\right\} \end{aligned}$$

For \(B\) we note that if \(u_{t}^{\prime }\) is jointly continuous

$$\begin{aligned} B=-\sum _{(t_{n})}\int \limits _{t_{i}}^{t_{i+1}}u_{t}^{\prime }(X_{t_{i}},T-s)ds \underset{N\rightarrow \infty }{\rightarrow }-\int \limits _{0}^{t}u_{t}^{\prime }(X_{s},T-s)ds. \end{aligned}$$

It remains to consider \(A\).

$$\begin{aligned} A&= \sum _{(t_{n})}u\left( X_{t_{i+1}},T-t_{i+1}\right) -u(X_{t_{i}},T-t_{i+1}) \\&= \sum _{(t_{n})}\left\{ M_{t_{i+1}}^{(t_{i+1})}-M_{t_{i}}^{(t_{i+1})}\right\} +\sum _{(t_{n})}\int \limits _{t_{i}}^{t_{i+1}}\mathcal{L }(u(.,T-t_{i+1}))(X_{s})ds, \end{aligned}$$

where the notation \(M\) with a superscript denotes a martingale. The second term converges to

$$\begin{aligned} \int \limits _{0}^{t}\mathcal{L }(u(.,T-s))(X_{s})ds \end{aligned}$$

and so the first converges to a limit we call \(M_{t}\). We wish to show that \( M_{t}\) is a martingale, but this follows from the tower property

$$\begin{aligned} M_{t}=L^{1}-\lim \left( \sum _{\left( t_{n}\right) \le t}\left( M_{t_{i+1}}^{(t_{i+1})}-M_{t_{i}}^{(t_{i+1})}\right) \right) \end{aligned}$$

Then for \(s<t\)

$$\begin{aligned} E\left[ M_{t}|\mathcal{F }_{s}\right]&= \sum _{\left( t_{n}\right) \le s}\left( M_{t_{i+1}}^{(t_{i+1})}-M_{t_{i}}^{(t_{i+1})}\right) +E\left[ \sum _{s\le t_{n}\le t}M_{t_{i+1}}^{(t_{i+1})}-M_{t_{i}}^{(t_{i+1})}| \mathcal{F }_{s}\right] \\&= M_{s}. \end{aligned}$$

Hence the result.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberlein, E., Madan, D., Pistorius, M. et al. Two price economies in continuous time. Ann Finance 10, 71–100 (2014). https://doi.org/10.1007/s10436-013-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-013-0228-3

Keywords

JEL Classification

Navigation