Skip to main content
Log in

A numerical approach for pressure transient analysis of a vertical well with complex fractures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new well test model for a vertical fractured well is developed based on a discrete-fracture model in which the fractures are discretized as one dimensional (1-D) entities. The model overcomes the weakness of complex meshing, a large number of grids, and instability in conventional stripe-fracture models. Then, the discrete-fracture model is implemented using a hybrid element finite-element method. Triangular elements are used for matrix and line elements for the fractures. The finite element formulation is validated by comparing with the semi-analytical solution of a single vertical fractured well. The accuracy of the approach is shown through several examples with different fracture apertures, fracture conductivity, and fracture amount. Results from the discrete-fracture model agree reasonably well with the stripe-fracture model and the analytic solutions. The advantages of the discrete-fracture model are presented in mesh generation, computational improvement, and abilities to handle complex fractures like wedge-shaped fractures and fractures with branches. Analytical results show that the number of grids in the discrete-fracture model is 10 % less than stripe-fracture model, and computational efficiency increases by about 50 %. The more fractures there are, the more the computational efficiency increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gringarten, A.C., Ramey, J., Raghavan, R.: Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture. J. Pet. Technol. 14, 347–360 (1972). doi:10.2118/4051-PA

    Google Scholar 

  2. Heber Cinco, L., F Samaniego, V., N. Dominguez, A.: Transient pressure behavior for a well with a finite-conductivity vertical fracture. Acta Mech. Sin. 18, 253–264 (1978). doi:10.2118/6014-PA

    Google Scholar 

  3. Weiyang, X., Xiaoping, L.: Research on fractured horizontal wells productivity and productivity influence in shale gas reservoir. Paper SPE 167674 presented at SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, 25–27 Feb 2014. doi:10.2118/167674-MS

  4. AI Rbeawi, S, Tiab, D.: Partially penetrating hydraulic fractures: pressure responses and flow dynamics. Paper SPE 16450 presented at SPE Production and Operations Symposium, Oklahoma City, Oklahoma, 23–26 Mar 2013. doi:10.2118/164500-MS

  5. Aimene, Y.E., Nairn, J.A.: Modeling multiple hydraulic fractures interacting with natural fractures using the material point method. Paper SPE 167801 presented at SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna. 25–27 Feb 2014. doi:10.2118/167801-MS

  6. Liu, Y.W., Ouyang, W.P., Zhao, P.H., et al.: Numerical well test for well with finite conductivity vertical fracture in coalbed. Appl. Math. Mech. Engl. Ed. 35, 729–740 (2014). doi:10.1007/s10483-014-1825-6

  7. Tan, X., Li, X.: Transient flow model and pressure dynamic features of tree-shaped fractal reservoirs. J. Hydrodyn. Ser. B. 26, 654–663 (2014). doi:10.1016/S1001-6058(14)60072-X

    Article  Google Scholar 

  8. Zhou, R., Liu, Y.W., Zhou, F.X.: Numerical solutions for the transient flow in the homogenous closed circle reservoirs. Acta Mech. Sin. 19, 40–45 (2003). doi:10.1007/BF02487451

  9. Ran, Q.Q., Gu, X.H., Li, S.L.: A coupled model for multiphase fluid flow and sedimentation deformation in oil reservoir and its numerical simulation. Acta Mech. Sin. 13, 264–272 (1997). doi:10.1007/BF02487708

    Article  Google Scholar 

  10. Zheng, H., Liu, F., Du, X.L.: Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method. Comput. Methods Appl. Mech. Eng. 295, 150–171 (2015). doi:10.1016/j.cma.2015.07.001

    Article  MathSciNet  Google Scholar 

  11. Ouyang, W.: A study of unsteady and non-isothermal flow in porous coalbed media. [Ph.D. Thesis], Chinese Academy of Science, Beijing (2014)

  12. Moinfar, A., Narr, W., Hui, M.-H., et al.: Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs. Paper SPE 142295 presented at SPE Reservoir Simulation Symposium, Texas, 21–23 Feb 2011. doi:10.2118/142295-MS

  13. Ma, K., Ren, G., Matten, K., et al.: Modeling techniques for foam flow in porous media. J. Pet. Technol. 20, 453–470 (2014). doi:10.2118/169104-PA

    Google Scholar 

  14. Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. 18, 588–596 (1982). doi:10.1029/WR018i003p00588

    Article  Google Scholar 

  15. Baca, R., Arneet, R., Langford, D.: Modeling fluid flow in fractured-porous rock masses by finite-element techniques. Int. J. Num. Methods Fluids. 4, 337–348 (1984). doi:10.1002/fld.1650040404

    Article  MATH  Google Scholar 

  16. Kim, J., Deo, M.D., Langford, D.: Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J. 46, 1120–1130 (2000). doi:10.1002/aic.690460604

    Article  Google Scholar 

  17. Karimi-Fard, M., Firoozabadi, A.: Numerical simulation of water injection in fractured media using the discrete-fracture model and the galerkin method. SPE Reserv. Eval. Eng. 6, 117–126 (2003). doi:10.2118/83633-PA

    Article  Google Scholar 

  18. Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete fracture model applicable for general purpose reservoir simulators. J. Pet. Technol. 9, 227–236 (2004). doi:10.2118/88812-PA

    Google Scholar 

  19. Zhang, Y., Yuan, X.C., Yao, J., et al.: Discrete fracture numerical simulation methods for reservoirs. J. Daqing Pet. Inst. 34, 80–85 (2010)

    Google Scholar 

  20. Hui, M.-H., Mallison, B., Heidary-Fyrozjaee, M., et al.: The upscaling of discrete fracture models for faster, coarse-scale simulations of IOR and EOR processes for fractured reservoirs. Paper SPE 166075 presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 Sept–2 Oct 2013 doi:10.2118/166075-MS

  21. Hazlett, R.D., Krishna Babu, D.: Discrete wellbore and fracture modeling for unconventional wells and unconventional reservoirs. Paper SPE 159379 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 8–10 Oct 2012. doi:10.2118/159379-MS

  22. Li, X.S., Demmel, J., Gilbert, J., et al.: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 51404232), the National Science and Technology Major Project (Grant 2011ZX05038003), and the China Postdoctoral Science Foundation (Grant 2014M561074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuewu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Liu, Y., Liu, W. et al. A numerical approach for pressure transient analysis of a vertical well with complex fractures. Acta Mech. Sin. 32, 640–648 (2016). https://doi.org/10.1007/s10409-016-0568-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0568-0

Keywords

Navigation