Skip to main content
Log in

Shape optimization of axisymmetric solids with the finite cell method using a fixed grid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion. Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cheu, T.C.: Sensitivity analysis and shape optimization of axisymmetric structures. Int. J. Numer. Methods Eng. 28, 95–108 (1989)

    Article  MATH  Google Scholar 

  2. Özakça, M., Hinton, E., Rao, N.V.R.: Shape optimization of axisymmetric structures with adaptive finite element procedures. Struct. Optim. 5, 256–264 (1993)

    Article  Google Scholar 

  3. Francavilla, A., Ramakrishnan, C.V., Zienkiewicz, O.C.: Optimization of shape to minimize stress concentration. J. Strain Anal. Eng. Des. 10, 63–70 (1975)

    Article  Google Scholar 

  4. Ding, Y.: Shape optimization of structures: a literature survey. Comput. Struct. 24, 985–1004 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Meng, L., Zhang, W., Zhu, J., et al.: A biarc-based shape optimization approach to reduce stress concentration effects. Acta Mech. Sin. 30, 370–382 (2014)

  6. Xia, Q., Shi, T., Liu, S., et al.: A level set solution to the stress-based structural shape and topology optimization. Comput. Struct. 90, 55–64 (2012)

  7. Chen, J., Shapiro, V., Suresh, K., et al.: Shape optimization with topological changes and parametric control. Int. J. Numer. Methods Eng. 71, 313–346 (2007)

  8. Zhang, W., Beckers, P., Fleury, C.: A unified parametric design approach to structural shape optimization. Int. J. Numer. Methods Eng. 38, 2283–2292 (1995)

  9. Zienkiewicz, O.C., Campbell, J.S.: Shape optimization and sequential linear programming. Optimum Structural Design, Chap. 7. Wiley, Chichester (1973)

  10. Zhang, W., Wang, D., Yang, J.: A parametric mapping method for curve shape optimization on 3d panel structures. Int. J. Numer. Methods Eng. 84, 485–504 (2010)

    MATH  Google Scholar 

  11. Rank, E., Ruess, M., Kollmannsberger, S., et al.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249, 104–115 (2012)

  12. Bennett, J.A., Botkin, M.E.: Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J. 23, 458–464 (1985)

    Article  Google Scholar 

  13. Le, C., Bruns, T., Tortorelli, D.: A gradient-based, parameter-free approach to shape optimization. Comput. Methods Appl. Mech. Eng. 200, 985–996 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcéra, M.J.: Fixed grid finite element analysis in structural design and optimisation [Ph. D. Thesis]. University of Sydney (1999)

  15. Kim, H., Querin, O.M., Steven, G.P., et al.: Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct. Multidiscip. Optim. 24, 441–448 (2002)

    Article  Google Scholar 

  16. Duysinx, P., Van Miegroet, L., Jacobs, T., et al.: Generalized shape optimization using x-fem and level set methods. In: IUTAM Symposium on Topological Design Optimization of Structures. Machines and Materials, 23–32. Springer, New York (2006)

  17. Wang, D., Zhang, W.: A general material perturbation method using fixed mesh for stress sensitivity analysis and structural shape optimization. Comput. Struct. 129, 40–53 (2013)

    Article  Google Scholar 

  18. Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parvizian, J., Düster, A., Rank, E.: Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Comput. Mech. 41, 121–133 (2006)

  20. Düster, A., Parvizian, J., Yang, Z., et al.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008)

  21. Ruess, M., Tal, D., Trabelsi, N., et al.: The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11, 425–437 (2012)

  22. Cai, S., Zhang, W., Zhu, J., et al.: Stress constrained shape and topology optimization with fixed mesh: A b-spline finite cell method combined with level set function. Comput. Methods Appl. Mech. Eng. 278, 361–387 (2014)

  23. Sethian, J.A.: Level Set Methods and Fast Marching Methods: evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  24. Cook, R.D., Malkus, D., Plesha, M., et al.: Concepts and Applications of Finite Element Analysis. Wiley, Hoboken (2007)

  25. Allaire, G., Jouve, F., Toader, A.M.: A level-set method for shape optimization. C. R. Math. 334, 1125–1130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer Science & Business Media, Berlin (2006)

    MATH  Google Scholar 

  27. Piegl, L., Tiller, W.: The NURBS Book. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  28. Kim, N.H., Chang, Y.: Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput. Methods Appl. Mech. Eng. 194, 3291–3314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Clark, B.W., Anderson, D.C.: The penalty boundary method. Finite Elem. Anal. Des. 39, 387–401 (2003)

    Article  Google Scholar 

  30. Höllig, K., Reif, U., Wipper, J.: Weighted extended b-spline approximation of dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rvachev, V.L.: Theory of r-functions and some applications. Naukova Dumka (Ukrainian), Kiev (1982)

  32. Xia, L., Zhu, J., Zhang, W., et al.: An implicit model for the integrated optimization of component layout and structure topology. Comput. Methods Appl. Mech. Eng. 257, 87–102 (2013)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 51275424), 973 Program (Grant 2011CB610304), Research Fund for the Doctoral Program of Higher Education of China (Grant 20126102130003) and the opening project (Grant KFJJ13-6M) of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). The first author is greatly thankful to Professor Piotr BREITKOPF, Université de Technologie de Compiègne, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Zhang, WH., Zhu, JH. et al. Shape optimization of axisymmetric solids with the finite cell method using a fixed grid. Acta Mech. Sin. 32, 510–524 (2016). https://doi.org/10.1007/s10409-015-0549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0549-8

Keywords

Navigation