Skip to main content
Log in

Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing \(s^{+}\) of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kline, S.J., Reynolds, W.C., Schraub, F.A., et al.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1998)

    Article  Google Scholar 

  2. Cantwell, B.J.: Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13, 457–515 (1981)

    Article  Google Scholar 

  3. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  4. Lumley, J.L., Yaglom, A.M.: A century of turbulence. Flow Turbul. Combust. 66, 241–286 (2001)

    Article  MATH  Google Scholar 

  5. Wallace, J.M.: Highlights from 50 years of turbulent boundary layer research. J. Turbul. 13, 1–70 (2013)

    Google Scholar 

  6. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adrian, R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 41301 (2007)

    Article  MATH  Google Scholar 

  8. Tang, Z.Q., Jiang, N., Schröder, A., et al.: Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow. Acta Mech. Sin. 28, 572–582 (2012)

    Article  Google Scholar 

  9. Schröder, A., Geisler, R., Staack, K., et al.: Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids 50, 1071–1091 (2011)

    Article  Google Scholar 

  10. Elsinga, G.E., Kuik, D.J., van Oudheusden, B.W., et al.: Investigation of the three-dimensional coherent structures in a turbulent boundary layer with Tomographic-PIV. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2007)

  11. Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)

    Article  MATH  Google Scholar 

  12. Pan, C., Wang, J.J., Zhang, C.: Identification of Lagrangian coherent structures in the turbulent boundary layer. Sci. China Phys. Mech. Astron. 52, 248–257 (2009)

    Article  Google Scholar 

  13. Xu, C.X., Deng, B.Q., Huang, W.X., et al.: Coherent structures in wall turbulence and mechanism for drag reduction control. Sci. China Phys. Mech. Astron. 56, 1053–1061 (2013)

    Article  Google Scholar 

  14. Chen, J., Hussain, F., Pei, J., et al.: Velocity–vorticity correlation structure in turbulent channel flow. J. Fluid Mech. 742, 291–307 (2014)

    Article  Google Scholar 

  15. Wu, X.H., Moin, P.: Forest of hairpins in a low-Reynolds-number zero-pressure-gradient flat-plate boundary layer. Phys. Fluids 21, 91106 (2009)

    Article  MATH  Google Scholar 

  16. Wu, X.H., Moin, P.: Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lesieur, M., Begou, P., Briand, E., et al.: Coherent-vortex dynamics in large-eddy simulations of turbulence. J. Turbul. 4, 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, D., Luo, J., Zhou, H.: Dynamic model of coherent structure in the wall region of a turbulent boundary layer. Sci. China Phys. Mech. Astron. 46, 291–299 (2003)

    Article  MATH  Google Scholar 

  19. Tian, H.P., Yang, S.Q., Cheng, L., et al.: Antisymmetric quadrupole mode of coherent structures in wall-bounded turbulence. Theor. Appl. Mech. Lett. 3, 52002 (2013)

    Article  Google Scholar 

  20. Yang, S.Q., Jiang, N.: Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method. Sci. China Phys. Mech. Astron. 55, 1863–1872 (2012)

    Article  Google Scholar 

  21. Tian, H.P., Jiang, N., Huang, Y.X., et al.: Study on local topology model of low/high streak structures in wall-bounded turbulence by tomographic time-resolved particle image velocimetry. Appl. Math. Mech. Engl. Ed. 36, 1121–1130 (2015)

  22. Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos. Trans. R. Soc. A 368, 4775–4806 (2010)

    Article  Google Scholar 

  23. Luo, Y.: Recent progress in exploring drag reduction mechanism of real skin surface: a review. J. Mech. Med. Biol. 15, 1530002 (2015)

    Article  Google Scholar 

  24. Saravi, S.S., Cheng, K.: A review of drag reduction by riblets and micro-textures in the turbulent boundary layers. Eur. Sci. J. 9, 62–81 (2013)

    Google Scholar 

  25. Goldstein, D.B., Tuan, T.C.: Secondary flow induced by riblets. J. Fluid Mech. 363, 115–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Choi, K.S.: Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 208, 417–458 (1989)

    Article  Google Scholar 

  27. Karniadakis, G.E., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldstein, D., Handler, R., Sirovich, L.: Direct numerical simulation of turbulent flow over a modelled riblet covered surface. J. Fluid Mech. 302, 333–376 (1995)

    Article  MATH  Google Scholar 

  29. Bechert, D.W., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129 (1989)

    Article  Google Scholar 

  30. Lee, S.J., Lee, S.H.: Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 30, 153–166 (2001)

    Article  Google Scholar 

  31. Suzuki, Y., Kasagi, N.: Turbulent drag reduction mechanism above a riblet surface. AIAA J. 32, 1781–1790 (1994)

    Article  Google Scholar 

  32. Jung, Y.C., Bhushan, B.: Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys. Condens. Matter 22, 35104 (2010)

    Article  Google Scholar 

  33. Bixler, G.D., Bhushan, B.: Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Adv. Funct. Mater. 23, 4507–4528 (2013)

    Article  Google Scholar 

  34. García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Philos. Trans. R. Soc. A 369, 1412–1427 (2011)

    Article  Google Scholar 

  35. García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)

    Article  MATH  Google Scholar 

  36. Yang, S.Q., Choi, K.S., Jiang, N.: Flow visualization on Kelvin–Helmholtz-like roller structures in turbulent boundary layer over riblets. Chin. J. Theor. Appl. Mech. 47(3), 529–533 (2015) (in Chinese)

  37. Westerweel, J., Elsinga, G.E., Adrian, R.J.: Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech. 45, 409–436 (2013)

  38. Elsinga, G.E., Scarano, F., Wieneke, B., et al.: Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)

    Article  Google Scholar 

  39. Gao, Q., Wang, H.P., Shen, G.X.: Review on development of volumetric particle image velocimetry. Chin. Sci. Bull. 58, 4541–4556 (2013)

    Article  MathSciNet  Google Scholar 

  40. Westfeld, P., Maas, H., Pust, O., et al.: 3-D least squares matching for volumetric velocimetry data processing. In: Proceedings of the 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, 5–8 July, 2010

  41. Liu, W., Jiang, N.: Three kinds of velocity structure function in turbulent flows. Chin. Phys. Lett. 21, 1989–1992 (2004)

    Article  Google Scholar 

  42. Huang, L., Choi, K.S., Fan, B., et al.: Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force. Sci. China Phys. Mech. Astron. 57, 2133–2140 (2014)

    Article  Google Scholar 

  43. Fan, X., Jiang, N.: Skin friction measurement in turbulent boundary layer by mean velocity profile method. Mech. Eng. 27, 28–30 (2005). (in Chinese)

    Google Scholar 

  44. Li, S., Yang, S.Q., Jiang, N.: TRPIV measurement of drag-reduction in the turbulent boundary layer over riblets plate. Chin. J. Theor. Appl. Mech. 45, 183–192 (2013). (in Chinese)

    Google Scholar 

  45. Deng, B.Q., Xu, C.X., Huang, W.X., et al.: Effect of active control on optimal structures in wall turbulence. Sci. China Phys. Mech. Astron. 56, 290–297 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Philip Cohen at the University of Nottingham for his invaluable suggestions for writing the manuscript. The project was supported by the National Natural Science Foundation of China (Grants 11332006, 11272233, and 11411130150), the foundation from the China Scholarship Council (CSC) (Grant 201306250092), and the Foundation Project for Outstanding Doctoral Dissertations of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Qiong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SQ., Li, S., Tian, HP. et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets. Acta Mech. Sin. 32, 284–294 (2016). https://doi.org/10.1007/s10409-015-0541-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0541-3

Keywords

Navigation