Skip to main content
Log in

Modeling development on the meso-scale reacting transport phenomena in proton exchange membrane fuel cells

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The catalyst layer (CL) of proton exchange membrane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a mesoscale structure reconstruction technique to mimic the selforganization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and -physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, L.M., Jayaraman, A., Schweizer, K.S.: Molecular theories of polymer nanocomposites. Current Opinion in Solid State and Materials Science 14, 38–48 (2010)

    Article  Google Scholar 

  2. Yan, Q., Wu, J.: Modeling of single catalyst particle in cathode of PEM fuel cells. Energy Conversion and Management 49, 2425–2433 (2008)

    Article  Google Scholar 

  3. http://www.dicp.cas.cn/yjxt/5s/yqsb/.

  4. Zeng, Q.H., Yu, A.B. Lu, G.Q.: Multiscale modeling and simulation of polymer nanocomposites. Progress in Polymer Science 33, 191–269 (2008)

    Article  Google Scholar 

  5. Izvekov, S., Violi, A.: A coarse-grained molecular dynamics study of carbon nanoparticle aggregation. Journal of Chemical Theory and Computation 2, 504–512 (2006)

    Article  Google Scholar 

  6. Venkatnathan, A., Devanathan, R., Dupuis, M.: Atomistic simulations of hydrated nafion and temperature effects on hydronium ion mobility. The Journal of Physical Chemistry B 111, 7234–7244 (2007)

    Article  Google Scholar 

  7. Espanol, P.: Dissipative Particle Dynamics and Other Fluid Particle Models Micromechanics and Nanoscale Effects. 213–235, Springer Netherlands (2004)

    Book  Google Scholar 

  8. Dong, Y., Bhattacharyya, D., Hunter, P.J.: Experimental characterisation and object-oriented finite element modelling of polypropylene/organoclay nanocomposites. Composites Science and Technology 68, 2864–2875 (2008)

    Article  Google Scholar 

  9. Hao, L., Cheng, P.: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. Journal of Power Sources 195, 3870–3881 (2010)

    Article  Google Scholar 

  10. Ng, T.Y., Yeak, S.H., Liew, K.M.: Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes. Nanotechnology 19, 055702 (2008)

    Article  Google Scholar 

  11. Balbuena, P.B., Lamas, E.J., Wang, Y.: Molecular modeling studies of polymer electrolytes for power sources. Electrochimica Acta 50, 3788–3795 (2005)

    Article  Google Scholar 

  12. Cho, J., Luo, J.J., Daniel, I.M.: Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Composites Science and Technology 67, 2399–2407 (2007)

    Article  Google Scholar 

  13. Wescott, J.T., Qi, Y., Subramanian, L., et al.: Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. The Journal of Chemical Physics 124, 134702–134714 (2006)

    Article  Google Scholar 

  14. Komarov, P.V., Veselov, I.N., Chu, P.P., et al.: Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly (ether ether ketone). Chemical Physics Letters 487, 291–296 (2010)

    Article  Google Scholar 

  15. Epping, M.K., Kopasz, J.P., McMurphy, K.W.: Status of fuel cells and the challenges facing fuel cell technology today. In: Fuel Cell Chemistry and Operation, Chapter 1, 1–13. American Chemical Society, America

  16. Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B 108, 750–760 (2004)

    Article  Google Scholar 

  17. Marrink, S.J., Risselada, H.J., Yefimov, S., et al.: The martini force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B 111, 7812–7824 (2007)

    Article  Google Scholar 

  18. Risselada, H.J., Marrink, S.J.: The molecular face of lipid rafts in model membranes. Proceedings of the National Academy of Sciences of the United States of America 105, 17367–17372 (2008)

    Article  Google Scholar 

  19. Hwankyu, L., Alex, H.d.V., Siewert-Jan, M., et al.: A coarsegrained model for polyethylene oxide and polyethylene glycol: Conformation and hydrodynamics. The Journal of Physical Chemistry B 113, 13186–13194 (2009)

    Article  Google Scholar 

  20. López, C.A., Rzepiela, A.J., de Vries, A.H., et al.: Coarsegrained force field: extension to carbohydrates. Journal of Chemical Theory and Computation 5, 3195–3210 (2009)

    Article  Google Scholar 

  21. Barbosa, R., Andaverde, J., Escobar, B., et al.: Stochastic reconstruction and a scaling method to determine effective transport coefficients of a proton exchange membrane fuel cell cata lyst layer. Journal of Power Sources 196, 1248–1257 (2011)

    Article  Google Scholar 

  22. Sheng, N., Boyce, M.C., Parks, D.M., et al.: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45, 487–506 (2004)

    Article  Google Scholar 

  23. Porter, D.: Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Materials Science and Engineering A 365, 38–45 (2004)

    Article  Google Scholar 

  24. Liu, Q., De Kee, D.: Modeling of diffusion through nanocomposite membranes. Journal of Non-Newtonian Fluid Mechanics 131, 32–43 (2005)

    Article  MATH  Google Scholar 

  25. Maiti, A.: Multiscale modeling with carbon nanotubes. Microelectronics Journal 39, 208–221 (2008)

    Article  MathSciNet  Google Scholar 

  26. Fermeglia, M., Pricl, S.: Multiscale molecular modeling in nanostructured material design and process system engineering. Computers & Chemical Engineering 33, 1701–1710 (2009)

    Article  Google Scholar 

  27. Fermeglia, M., Pricl, S.: Multiscale modeling for polymer systems of industrial interest. Progress in Organic Coatings 58, 187–199 (2007)

    Article  Google Scholar 

  28. Lim, D.H., Lee, W.D., Lee, H.I.: Highly dispersed and nanosized pt-based electrocatalysts for low-temperature fuel cells. Catalysis Surveys from Asia 12, 310–325 (2008)

    Article  Google Scholar 

  29. Coker, E.N., Steen, W.A., Miller, J.T., et al.: Nanostructured Pt/C electrocatalysts with high platinum dispersions through zeolite-templating, Microporous and Mesoporous Materials 101, 440–444 (2007)

    Article  Google Scholar 

  30. Sun, L., Gibson, R.F., Gordaninejad, F., et al.: Energy absorption capability of nanocomposites: A review. Composites Science and Technology 69, 2392–2409 (2009)

    Article  Google Scholar 

  31. Xiao, Y., Yuan, J., Sundn, B.: Process based large scale molecular dynamic simulation of a fuel cell catalyst layer. Journal of The Electrochemical Society 159, B251–B258 (2012)

    Article  Google Scholar 

  32. Cai, M., Ruthkosky, M.S., Merzougui, B., et al.: Investigation of thermal and electrochemical degradation of fuel cell catalysts. Journal of Power Sources 160, 977–986 (2006)

    Article  Google Scholar 

  33. Constantin, L.A., Perdew, J.P., Pitarke, J.M.: Exchangecorrelation hole of a generalized gradient approximation for solids and surfaces. Phys. Rev. B 79, 075126 (2009)

    Article  Google Scholar 

  34. Malek, K., Eikerling, M., Wang, Q., et al.: Nanophase segregation and water dynamics in hydrated Nafion: Molecular modeling and experimental validation. The Journal of Chemical Physics 129, 204702 (2008)

    Article  Google Scholar 

  35. Klaus, S.R., Qiang, C.: Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75–83 (2008)

    Article  Google Scholar 

  36. Reinmuth, W.H.: Thermodynamic restrictions on the rate law for faradaic current. Journal of Electroanalytical Chemistry 34, 297–311 (1972)

    Article  Google Scholar 

  37. https://wiki.fysik.dtu.dk/ase/overview.html.

  38. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82, 1013–1024 (1977)

    Article  Google Scholar 

  39. Posch, H.A., Hoover, K.W.G.: Steady state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Physics Review E 52, 1711–1720 (1995)

    Article  Google Scholar 

  40. Meakin, P.: Particle methods for simulation of subsurface multiphase fluid flow and biogeochemical processes. Journal of Physics: Conference Series 78, 012047 (2007)

    Article  Google Scholar 

  41. Jiang, F., Sousa, A.C.M.: Smoothed particle hydrodynamics modeling of transverse flow in randomly aligned fibrous porous media. Transport in Porous Media 75, 17–33 (2008)

    Article  MathSciNet  Google Scholar 

  42. Tartakovsky, A.M., Meakin, P., Scheibe, T.D., et al.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. Journal of Computational Physics 222, 654–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jorn, R., Voth, G.A.: Mesoscale simulation of proton transport in proton exchange membranes. Journal of Physical Chemistry C 116, 10476–10489 (2012)

    Article  Google Scholar 

  44. Varnik, F., Binder, K.: Multiscale modeling of polymers at interfaces. Int. J. Mater. Res. 100, 1494–1502 (2009)

    Article  Google Scholar 

  45. Ma, L., Bao, R., Guo, Y.: Waterjet penetration simulation by hybrid code of SPH and FEA. International Journal of Impact Engineering 35, 1035–1042 (2008)

    Article  Google Scholar 

  46. Zhang, Z., Qiang, H., Gao, W.: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures 33, 255–264 (2011)

    Article  Google Scholar 

  47. Wang, W.X., Takao, Y.: Isoparametric finite point method in computational mechanics. Computational Mechanics 33, 481–490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Xiao, Y. Modeling development on the meso-scale reacting transport phenomena in proton exchange membrane fuel cells. Acta Mech Sin 29, 370–378 (2013). https://doi.org/10.1007/s10409-013-0046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0046-x

Keywords

Navigation