Skip to main content
Log in

Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated silicon phases based on first-principles calculations and identify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithiated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the microscopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strengthens the amorphous structure, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  Google Scholar 

  2. Choi, N.S., Chen, Z.H., Freunberger, S.A., et al.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Edit. 51, 9994–10024 (2012)

    Article  Google Scholar 

  3. Kasavajjula, U., Wang, C.S., Appleby, A.J.: Nano- and bulksilicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007)

    Article  Google Scholar 

  4. Zhang, W.J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    Article  Google Scholar 

  5. Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–64 (2000)

    Article  Google Scholar 

  6. Zhao, K.J., Pharr, M., Vlassak, J.J., et al.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl. Phys. 108, 073517 (2010)

    Article  Google Scholar 

  7. Zhao, K.J., Pharr, M., Hartle, L., et al.: Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures. J. Power Sources 218, 6–14 (2012)

    Article  Google Scholar 

  8. Pharr, M., Zhao, K.J., Wang, X.W., et al.: Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett. 12, 5039–5047 (2012)

    Article  Google Scholar 

  9. Choi, N.S., Yao, Y., Cui, Y., et al.: One dimensional Si/Sn — based nanowires and nanotubes for lithium-ion energy storage materials. J. Mat. Chem. 21, 9825–9840 (2011)

    Article  Google Scholar 

  10. Chan, C.K., Peng, H.L., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008)

    Article  Google Scholar 

  11. Cui, L.F., Hu, L.B., Choi, J.W., et al.: Light-weight freestanding carbon nanotube-silicon films for anodes of lithium ion batteries. Acs. Nano 4, 3671–3678 (2010)

    Article  Google Scholar 

  12. Haftbaradaran, H., Xiao, X.C., Verbrugge, M.W., et al.: Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J. Power Sources 206, 357–366 (2012)

    Article  Google Scholar 

  13. Kim, H., Han, B., Choo, J., et al.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Edit. 47, 10151–10154 (2008)

    Article  Google Scholar 

  14. Krishnan, R., Lu, T.M., Koratkar, N.: Functionally straingraded nanoscoops for high power Li-ion battery anodes. Nano Lett. 11, 377–384 (2011)

    Article  Google Scholar 

  15. Magasinski, A., Dixon, P., Hertzberg, B., et al.: Highperformance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010)

    Article  Google Scholar 

  16. Wang, J.W., Liu, X.H., Zhao, K.J., et al.: Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. Acs. Nano 6, 9158–9167 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yao, Y., McDowell, M.T., Ryu, I., et al.: Interconnected silicon hollow nanospheres for lithium-Ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    Article  Google Scholar 

  18. Yu, C.J., Li, X., Ma, T., et al.: Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2, 68–73 (2012)

    Article  Google Scholar 

  19. Zhang, S.C., Du, Z.J., Lin, R.X., et al.: Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Adv. Mater. 22, 5378–5382 (2010)

    Article  Google Scholar 

  20. Takamura, T., Ohara, S., Uehara, M., et al.: A vacuum deposited Si film having a Li extraction capacity over 2 000mA·h/g with a long cycle life. J. Power Sources 129, 96–100 (2004)

    Article  Google Scholar 

  21. Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control. Nat. Nanotech. 7, 309–314 (2012)

    Google Scholar 

  22. Wu, H., Zheng, G.Y., Liu, N.A., et al.: Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012)

    Article  Google Scholar 

  23. Hwang, T.H., Lee, Y.M., Kong, B.S., et al.: Electrospun coreshell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802–807 (2012)

    Article  Google Scholar 

  24. Sethuraman, V.A., Chon, M.J., Shimshak, M., et al.: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062–5066 (2010)

    Article  Google Scholar 

  25. Sethuraman, V.A, Chon, M.J., Shimshak, M., et al.:In situ measurement of biaxial modulus of Si anode for Li-ion batteries. Electrochem. Commun. 12, 1614–1617 (2010)

    Article  Google Scholar 

  26. Zhao, K.J., Tritsaris, G.A., Pharr, M., et al.: Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12, 4397–4403 (2012)

    Article  Google Scholar 

  27. Soni, S.K., Sheldon, B.W., Xiao, X.C., et al.: Thickness effects on the lithiation of amorphous silicon thin films. ScriptaMater. 64, 307–310 (2010)

    Google Scholar 

  28. Anand, L.: A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60, 1983–2002 (2012)

    Article  MathSciNet  Google Scholar 

  29. Cui, Z.W., Gao, F., Qu, J.M.: A finite deformation stressdependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280–1295 (2012)

    Article  MathSciNet  Google Scholar 

  30. Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804–828 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zhao, K.J., Pharr, M., Vlassak, J.J., et al.: Inelastic hosts as electrodes for high-capacity lithium-ion batteries. J. Appl. Phys. 109, 016110 (2011)

    Article  Google Scholar 

  32. Brassart, L., Zhao, K.J., Suo, Z.G.: Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int. J. Solids Struct. 50, 1120–1129 (2013)

    Article  Google Scholar 

  33. Zhao, K.J., Pharr, M., Cai, S. Q., et al.: Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94, S226–S235 (2011)

    Article  Google Scholar 

  34. Brassart, L., Suo, Z.G.: Reactive flow in large-deformation electrodes of lithium-ion batteries. Int. J. Appl. Mech. 4, 1250023 (2012)

    Article  Google Scholar 

  35. Brassart, L., Suo, Z.G.: Reactive flow in solids. J. Mech. Phys. Solids 61, 61–77 (2013)

    Article  MathSciNet  Google Scholar 

  36. Chevrier V.L., Dahn, J.R.: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156, A454–A458 (2009)

    Article  Google Scholar 

  37. Huang, S., Zhu, T.: Atomistic mechanisms of lithium insertion in amorphous silicon. J. Power Sources 196, 3664–3668 (2011)

    Article  Google Scholar 

  38. Zhao, K.J., Wang, W. L., Gregoire, J., et al.: Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Lett. 11, 2962–2967 (2011)

    Article  Google Scholar 

  39. Haftbaradaran, H., Gao, H.J.: Ratcheting of silicon island electrodes on substrate due to cyclic intercalation. Appl. Phys. Lett. 100, 121907 (2012)

    Article  Google Scholar 

  40. Maranchi, J.P., Hepp, A.F., Evans, A.G., et al.: Interfacial properties of the a-Si/Cu: Active-inactive thin-film anode system for lithium-ion batteries. J. Electrochem. Soc. 153, A1246–A1253 (2006)

    Article  Google Scholar 

  41. Soler, J.M., Artacho, E., Gale, J.D., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.-Condes. Matter 14, 2745–2779 (2002)

    Article  Google Scholar 

  42. Bazant, M.Z., Kaxiras, E., Justo, J. F.: Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B 56, 8542–8552 (1997)

    Article  Google Scholar 

  43. Mo, Y., Bazant, M. Z., Kaxiras, E.: Sulfur point defects in crystalline and amorphous silicon. Phys. Rev. B 70, 205210 (2004)

    Article  Google Scholar 

  44. Tritsaris G.A., Zhao, K.J., Okeke, O.U., et al.: Diffusion of lithium in bulk amorphous silicon: A theoretical study. J. Phys. Chem. C 116, 22212–22216 (2012)

    Article  Google Scholar 

  45. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  46. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157–165 (1952)

    MathSciNet  MATH  Google Scholar 

  47. Jin, M.Z., Chen, C.Q., Lu, T.J.: The mechanical behavior of porous metal fiber sintered sheets. J. Mech. Phys. Solids 61, 161–174 (2013)

    Article  MathSciNet  Google Scholar 

  48. Zhao, K.J., Pharr, M., Wan, Q., et al.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012)

    Article  Google Scholar 

  49. Argon, A.S., Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses? Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 39, 1762–1778 (2008)

    Article  Google Scholar 

  50. Schuh C.A., Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nature 2, 449–452 (2003)

    Article  Google Scholar 

  51. Gao, Y.F., Wang, L., Bei, H., et al.: On the shear-band direction in metallic glasses. Acta Mater. 59, 4159–4167 (2011)

    Article  Google Scholar 

  52. Ye, J.C., Lu, J., Liu, C.T., et al.: Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2011)

    Article  Google Scholar 

  53. Boor C.D.: A Practical Guide to Splines. Springer-Verlag, New York, 113–114 (1978)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jie Zhao.

Additional information

The project was supported by the National Natural Science Foundation of China (11005124 and 11275229), the Natural Science Foundation of Anhui Province (1208085QA05), and the National Fund for Scientific Research (FNRS) of Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, KJ., Li, YG. & Brassart, L. Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries. Acta Mech Sin 29, 379–387 (2013). https://doi.org/10.1007/s10409-013-0041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-013-0041-2

Keywords

Navigation